File size: 15,833 Bytes
d631808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from __future__ import annotations

import inspect
import json
from collections.abc import Awaitable
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Callable, Literal, Union, overload

from openai.types.responses.file_search_tool_param import Filters, RankingOptions
from openai.types.responses.response_output_item import LocalShellCall, McpApprovalRequest
from openai.types.responses.tool_param import CodeInterpreter, ImageGeneration, Mcp
from openai.types.responses.web_search_tool_param import UserLocation
from pydantic import ValidationError
from typing_extensions import Concatenate, NotRequired, ParamSpec, TypedDict

from . import _debug
from .computer import AsyncComputer, Computer
from .exceptions import ModelBehaviorError
from .function_schema import DocstringStyle, function_schema
from .items import RunItem
from .logger import logger
from .run_context import RunContextWrapper
from .tool_context import ToolContext
from .tracing import SpanError
from .util import _error_tracing
from .util._types import MaybeAwaitable

if TYPE_CHECKING:
    from .agent import Agent

ToolParams = ParamSpec("ToolParams")

ToolFunctionWithoutContext = Callable[ToolParams, Any]
ToolFunctionWithContext = Callable[Concatenate[RunContextWrapper[Any], ToolParams], Any]
ToolFunctionWithToolContext = Callable[Concatenate[ToolContext, ToolParams], Any]

ToolFunction = Union[
    ToolFunctionWithoutContext[ToolParams],
    ToolFunctionWithContext[ToolParams],
    ToolFunctionWithToolContext[ToolParams],
]


@dataclass
class FunctionToolResult:
    tool: FunctionTool
    """The tool that was run."""

    output: Any
    """The output of the tool."""

    run_item: RunItem
    """The run item that was produced as a result of the tool call."""


@dataclass
class FunctionTool:
    """A tool that wraps a function. In most cases, you should use  the `function_tool` helpers to
    create a FunctionTool, as they let you easily wrap a Python function.
    """

    name: str
    """The name of the tool, as shown to the LLM. Generally the name of the function."""

    description: str
    """A description of the tool, as shown to the LLM."""

    params_json_schema: dict[str, Any]
    """The JSON schema for the tool's parameters."""

    on_invoke_tool: Callable[[ToolContext[Any], str], Awaitable[Any]]
    """A function that invokes the tool with the given context and parameters. The params passed
    are:
    1. The tool run context.
    2. The arguments from the LLM, as a JSON string.

    You must return a string representation of the tool output, or something we can call `str()` on.
    In case of errors, you can either raise an Exception (which will cause the run to fail) or
    return a string error message (which will be sent back to the LLM).
    """

    strict_json_schema: bool = True
    """Whether the JSON schema is in strict mode. We **strongly** recommend setting this to True,
    as it increases the likelihood of correct JSON input."""

    is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True
    """Whether the tool is enabled. Either a bool or a Callable that takes the run context and agent
    and returns whether the tool is enabled. You can use this to dynamically enable/disable a tool
    based on your context/state."""


@dataclass
class FileSearchTool:
    """A hosted tool that lets the LLM search through a vector store. Currently only supported with
    OpenAI models, using the Responses API.
    """

    vector_store_ids: list[str]
    """The IDs of the vector stores to search."""

    max_num_results: int | None = None
    """The maximum number of results to return."""

    include_search_results: bool = False
    """Whether to include the search results in the output produced by the LLM."""

    ranking_options: RankingOptions | None = None
    """Ranking options for search."""

    filters: Filters | None = None
    """A filter to apply based on file attributes."""

    @property
    def name(self):
        return "file_search"


@dataclass
class WebSearchTool:
    """A hosted tool that lets the LLM search the web. Currently only supported with OpenAI models,
    using the Responses API.
    """

    user_location: UserLocation | None = None
    """Optional location for the search. Lets you customize results to be relevant to a location."""

    search_context_size: Literal["low", "medium", "high"] = "medium"
    """The amount of context to use for the search."""

    @property
    def name(self):
        return "web_search_preview"


@dataclass
class ComputerTool:
    """A hosted tool that lets the LLM control a computer."""

    computer: Computer | AsyncComputer
    """The computer implementation, which describes the environment and dimensions of the computer,
    as well as implements the computer actions like click, screenshot, etc.
    """

    @property
    def name(self):
        return "computer_use_preview"


@dataclass
class MCPToolApprovalRequest:
    """A request to approve a tool call."""

    ctx_wrapper: RunContextWrapper[Any]
    """The run context."""

    data: McpApprovalRequest
    """The data from the MCP tool approval request."""


class MCPToolApprovalFunctionResult(TypedDict):
    """The result of an MCP tool approval function."""

    approve: bool
    """Whether to approve the tool call."""

    reason: NotRequired[str]
    """An optional reason, if rejected."""


MCPToolApprovalFunction = Callable[
    [MCPToolApprovalRequest], MaybeAwaitable[MCPToolApprovalFunctionResult]
]
"""A function that approves or rejects a tool call."""


@dataclass
class HostedMCPTool:
    """A tool that allows the LLM to use a remote MCP server. The LLM will automatically list and
    call tools, without requiring a a round trip back to your code.
    If you want to run MCP servers locally via stdio, in a VPC or other non-publicly-accessible
    environment, or you just prefer to run tool calls locally, then you can instead use the servers
    in `agents.mcp` and pass `Agent(mcp_servers=[...])` to the agent."""

    tool_config: Mcp
    """The MCP tool config, which includes the server URL and other settings."""

    on_approval_request: MCPToolApprovalFunction | None = None
    """An optional function that will be called if approval is requested for an MCP tool. If not
    provided, you will need to manually add approvals/rejections to the input and call
    `Runner.run(...)` again."""

    @property
    def name(self):
        return "hosted_mcp"


@dataclass
class CodeInterpreterTool:
    """A tool that allows the LLM to execute code in a sandboxed environment."""

    tool_config: CodeInterpreter
    """The tool config, which includes the container and other settings."""

    @property
    def name(self):
        return "code_interpreter"


@dataclass
class ImageGenerationTool:
    """A tool that allows the LLM to generate images."""

    tool_config: ImageGeneration
    """The tool config, which image generation settings."""

    @property
    def name(self):
        return "image_generation"


@dataclass
class LocalShellCommandRequest:
    """A request to execute a command on a shell."""

    ctx_wrapper: RunContextWrapper[Any]
    """The run context."""

    data: LocalShellCall
    """The data from the local shell tool call."""


LocalShellExecutor = Callable[[LocalShellCommandRequest], MaybeAwaitable[str]]
"""A function that executes a command on a shell."""


@dataclass
class LocalShellTool:
    """A tool that allows the LLM to execute commands on a shell."""

    executor: LocalShellExecutor
    """A function that executes a command on a shell."""

    @property
    def name(self):
        return "local_shell"


Tool = Union[
    FunctionTool,
    FileSearchTool,
    WebSearchTool,
    ComputerTool,
    HostedMCPTool,
    LocalShellTool,
    ImageGenerationTool,
    CodeInterpreterTool,
]
"""A tool that can be used in an agent."""


def default_tool_error_function(ctx: RunContextWrapper[Any], error: Exception) -> str:
    """The default tool error function, which just returns a generic error message."""
    return f"An error occurred while running the tool. Please try again. Error: {str(error)}"


ToolErrorFunction = Callable[[RunContextWrapper[Any], Exception], MaybeAwaitable[str]]


@overload
def function_tool(
    func: ToolFunction[...],
    *,
    name_override: str | None = None,
    description_override: str | None = None,
    docstring_style: DocstringStyle | None = None,
    use_docstring_info: bool = True,
    failure_error_function: ToolErrorFunction | None = None,
    strict_mode: bool = True,
    is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True,
) -> FunctionTool:
    """Overload for usage as @function_tool (no parentheses)."""
    ...


@overload
def function_tool(
    *,
    name_override: str | None = None,
    description_override: str | None = None,
    docstring_style: DocstringStyle | None = None,
    use_docstring_info: bool = True,
    failure_error_function: ToolErrorFunction | None = None,
    strict_mode: bool = True,
    is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True,
) -> Callable[[ToolFunction[...]], FunctionTool]:
    """Overload for usage as @function_tool(...)."""
    ...


def function_tool(
    func: ToolFunction[...] | None = None,
    *,
    name_override: str | None = None,
    description_override: str | None = None,
    docstring_style: DocstringStyle | None = None,
    use_docstring_info: bool = True,
    failure_error_function: ToolErrorFunction | None = default_tool_error_function,
    strict_mode: bool = True,
    is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True,
) -> FunctionTool | Callable[[ToolFunction[...]], FunctionTool]:
    """
    Decorator to create a FunctionTool from a function. By default, we will:
    1. Parse the function signature to create a JSON schema for the tool's parameters.
    2. Use the function's docstring to populate the tool's description.
    3. Use the function's docstring to populate argument descriptions.
    The docstring style is detected automatically, but you can override it.

    If the function takes a `RunContextWrapper` as the first argument, it *must* match the
    context type of the agent that uses the tool.

    Args:
        func: The function to wrap.
        name_override: If provided, use this name for the tool instead of the function's name.
        description_override: If provided, use this description for the tool instead of the
            function's docstring.
        docstring_style: If provided, use this style for the tool's docstring. If not provided,
            we will attempt to auto-detect the style.
        use_docstring_info: If True, use the function's docstring to populate the tool's
            description and argument descriptions.
        failure_error_function: If provided, use this function to generate an error message when
            the tool call fails. The error message is sent to the LLM. If you pass None, then no
            error message will be sent and instead an Exception will be raised.
        strict_mode: Whether to enable strict mode for the tool's JSON schema. We *strongly*
            recommend setting this to True, as it increases the likelihood of correct JSON input.
            If False, it allows non-strict JSON schemas. For example, if a parameter has a default
            value, it will be optional, additional properties are allowed, etc. See here for more:
            https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#supported-schemas
        is_enabled: Whether the tool is enabled. Can be a bool or a callable that takes the run
            context and agent and returns whether the tool is enabled. Disabled tools are hidden
            from the LLM at runtime.
    """

    def _create_function_tool(the_func: ToolFunction[...]) -> FunctionTool:
        schema = function_schema(
            func=the_func,
            name_override=name_override,
            description_override=description_override,
            docstring_style=docstring_style,
            use_docstring_info=use_docstring_info,
            strict_json_schema=strict_mode,
        )

        async def _on_invoke_tool_impl(ctx: ToolContext[Any], input: str) -> Any:
            try:
                json_data: dict[str, Any] = json.loads(input) if input else {}
            except Exception as e:
                if _debug.DONT_LOG_TOOL_DATA:
                    logger.debug(f"Invalid JSON input for tool {schema.name}")
                else:
                    logger.debug(f"Invalid JSON input for tool {schema.name}: {input}")
                raise ModelBehaviorError(
                    f"Invalid JSON input for tool {schema.name}: {input}"
                ) from e

            if _debug.DONT_LOG_TOOL_DATA:
                logger.debug(f"Invoking tool {schema.name}")
            else:
                logger.debug(f"Invoking tool {schema.name} with input {input}")

            try:
                parsed = (
                    schema.params_pydantic_model(**json_data)
                    if json_data
                    else schema.params_pydantic_model()
                )
            except ValidationError as e:
                raise ModelBehaviorError(f"Invalid JSON input for tool {schema.name}: {e}") from e

            args, kwargs_dict = schema.to_call_args(parsed)

            if not _debug.DONT_LOG_TOOL_DATA:
                logger.debug(f"Tool call args: {args}, kwargs: {kwargs_dict}")

            if inspect.iscoroutinefunction(the_func):
                if schema.takes_context:
                    result = await the_func(ctx, *args, **kwargs_dict)
                else:
                    result = await the_func(*args, **kwargs_dict)
            else:
                if schema.takes_context:
                    result = the_func(ctx, *args, **kwargs_dict)
                else:
                    result = the_func(*args, **kwargs_dict)

            if _debug.DONT_LOG_TOOL_DATA:
                logger.debug(f"Tool {schema.name} completed.")
            else:
                logger.debug(f"Tool {schema.name} returned {result}")

            return result

        async def _on_invoke_tool(ctx: ToolContext[Any], input: str) -> Any:
            try:
                return await _on_invoke_tool_impl(ctx, input)
            except Exception as e:
                if failure_error_function is None:
                    raise

                result = failure_error_function(ctx, e)
                if inspect.isawaitable(result):
                    return await result

                _error_tracing.attach_error_to_current_span(
                    SpanError(
                        message="Error running tool (non-fatal)",
                        data={
                            "tool_name": schema.name,
                            "error": str(e),
                        },
                    )
                )
                return result

        return FunctionTool(
            name=schema.name,
            description=schema.description or "",
            params_json_schema=schema.params_json_schema,
            on_invoke_tool=_on_invoke_tool,
            strict_json_schema=strict_mode,
            is_enabled=is_enabled,
        )

    # If func is actually a callable, we were used as @function_tool with no parentheses
    if callable(func):
        return _create_function_tool(func)

    # Otherwise, we were used as @function_tool(...), so return a decorator
    def decorator(real_func: ToolFunction[...]) -> FunctionTool:
        return _create_function_tool(real_func)

    return decorator