Clone77 commited on
Commit
aa87cd8
·
verified ·
1 Parent(s): 32c7166

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -532
app.py CHANGED
@@ -1,541 +1,54 @@
1
  import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
 
5
- # Set the background color of the dashboard
6
- st.set_page_config(layout="wide")
7
- st.markdown(
8
- """
9
- # Innomatics Online Trainer Bot
10
- Welcome to Innomatics Online Trainer Bot. This platform is designed to provide you with interactive learning experiences in various fields.
11
- """
12
- )
13
-
14
- # Introduction
15
- st.write("")
16
-
17
- # Question
18
- st.write("In which module do you have doubt?")
19
-
20
- # Create a multi-column layout for the buttons
21
- with st.expander("Select a module"):
22
- columns = st.columns(6)
23
- for i, col in enumerate(columns):
24
- if i < 3:
25
- col.button("Python", key="python")
26
- elif i < 6:
27
- col.button("Machine Learning", key="machine_learning")
28
- else:
29
- col.button("Deep Learning", key="deep_learning")
30
- if i == 0:
31
- col.button("Statistics", key="statistics")
32
- elif i == 1:
33
- col.button("Excel", key="excel")
34
- else:
35
- col.button("SQL", key="sql")
36
-
37
- # Redirect to the corresponding page when a button is clicked
38
- if st.session_state.button_clicked:
39
- if st.session_state.button_clicked == "python":
40
- st.session_state.redirect_to = "python"
41
- elif st.session_state.button_clicked == "machine_learning":
42
- st.session_state.redirect_to = "machine_learning"
43
- elif st.session_state.button_clicked == "deep_learning":
44
- st.session_state.redirect_to = "deep_learning"
45
- elif st.session_state.button_clicked == "statistics":
46
- st.session_state.redirect_to = "statistics"
47
- elif st.session_state.button_clicked == "excel":
48
- st.session_state.redirect_to = "excel"
49
- elif st.session_state.button_clicked == "sql":
50
- st.session_state.redirect_to = "sql"
51
-
52
- # Redirect to the corresponding page
53
- if "redirect_to" in st.session_state:
54
- if st.session_state.redirect_to == "python":
55
- import python
56
- python.main()
57
- elif st.session_state.redirect_to == "machine_learning":
58
- import machine_learning
59
- machine_learning.main()
60
- elif st.session_state.redirect_to == "deep_learning":
61
- import deep_learning
62
- deep_learning.main()
63
- elif st.session_state.redirect_to == "statistics":
64
- import statistics
65
- statistics.main()
66
- elif st.session_state.redirect_to == "excel":
67
- import excel
68
- excel.main()
69
- elif st.session_state.redirect_to == "sql":
70
- import sql
71
- sql.main()
72
-
73
- # Define the main functions for each module
74
- def python():
75
- st.write("Python Module")
76
-
77
- def machine_learning():
78
- st.write("Machine Learning Module")
79
-
80
- def deep_learning():
81
- st.write("Deep Learning Module")
82
-
83
- def statistics():
84
- st.write("Statistics Module")
85
-
86
- def excel():
87
- st.write("Excel Module")
88
-
89
- def sql():
90
- st.write("SQL Module")
91
-
92
- # Run the main function
93
- python()
94
- ```
95
-
96
- However, the above code is not ideal because it's not using the Hugging Face library. Here's a revised version of the code that uses the Hugging Face library:
97
-
98
- ```python
99
- import streamlit as st
100
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
101
- import pandas as pd
102
- import numpy as np
103
-
104
- # Set the background color of the dashboard
105
- st.set_page_config(layout="wide")
106
- st.markdown(
107
- """
108
- # Innomatics Online Trainer Bot
109
- Welcome to Innomatics Online Trainer Bot. This platform is designed to provide you with interactive learning experiences in various fields.
110
- """
111
- )
112
-
113
- # Introduction
114
- st.write("")
115
-
116
- # Question
117
- st.write("In which module do you have doubt?")
118
-
119
- # Create a multi-column layout for the buttons
120
- with st.expander("Select a module"):
121
- columns = st.columns(6)
122
- for i, col in enumerate(columns):
123
- if i < 3:
124
- col.button("Python", key="python")
125
- elif i < 6:
126
- col.button("Machine Learning", key="machine_learning")
127
- else:
128
- col.button("Deep Learning", key="deep_learning")
129
- if i == 0:
130
- col.button("Statistics", key="statistics")
131
- elif i == 1:
132
- col.button("Excel", key="excel")
133
- else:
134
- col.button("SQL", key="sql")
135
-
136
- # Redirect to the corresponding page when a button is clicked
137
- if st.session_state.button_clicked:
138
- if st.session_state.button_clicked == "python":
139
- st.session_state.redirect_to = "python"
140
- elif st.session_state.button_clicked == "machine_learning":
141
- st.session_state.redirect_to = "machine_learning"
142
- elif st.session_state.button_clicked == "deep_learning":
143
- st.session_state.redirect_to = "deep_learning"
144
- elif st.session_state.button_clicked == "statistics":
145
- st.session_state.redirect_to = "statistics"
146
- elif st.session_state.button_clicked == "excel":
147
- st.session_state.redirect_to = "excel"
148
- elif st.session_state.button_clicked == "sql":
149
- st.session_state.redirect_to = "sql"
150
-
151
- # Redirect to the corresponding page
152
- if "redirect_to" in st.session_state:
153
- if st.session_state.redirect_to == "python":
154
- python()
155
- elif st.session_state.redirect_to == "machine_learning":
156
- machine_learning()
157
- elif st.session_state.redirect_to == "deep_learning":
158
- deep_learning()
159
- elif st.session_state.redirect_to == "statistics":
160
- statistics()
161
- elif st.session_state.redirect_to == "excel":
162
- excel()
163
- elif st.session_state.redirect_to == "sql":
164
- sql()
165
-
166
- # Define the main functions for each module
167
- def python():
168
- st.write("Python Module")
169
-
170
- def machine_learning():
171
- st.write("Machine Learning Module")
172
-
173
- def deep_learning():
174
- st.write("Deep Learning Module")
175
-
176
- def statistics():
177
- st.write("Statistics Module")
178
-
179
- def excel():
180
- st.write("Excel Module")
181
-
182
- def sql():
183
- st.write("SQL Module")
184
-
185
- # Run the main function
186
- python()
187
- ```
188
-
189
- However, the above code is still not ideal because it's not using the Hugging Face library to load the models. Here's a revised version of the code that uses the Hugging Face library to load the models:
190
-
191
- ```python
192
- import streamlit as st
193
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
194
- import pandas as pd
195
- import numpy as np
196
-
197
- # Set the background color of the dashboard
198
- st.set_page_config(layout="wide")
199
- st.markdown(
200
- """
201
- # Innomatics Online Trainer Bot
202
- Welcome to Innomatics Online Trainer Bot. This platform is designed to provide you with interactive learning experiences in various fields.
203
- """
204
- )
205
-
206
- # Introduction
207
- st.write("")
208
-
209
- # Question
210
- st.write("In which module do you have doubt?")
211
-
212
- # Create a multi-column layout for the buttons
213
- with st.expander("Select a module"):
214
- columns = st.columns(6)
215
- for i, col in enumerate(columns):
216
- if i < 3:
217
- col.button("Python", key="python")
218
- elif i < 6:
219
- col.button("Machine Learning", key="machine_learning")
220
- else:
221
- col.button("Deep Learning", key="deep_learning")
222
- if i == 0:
223
- col.button("Statistics", key="statistics")
224
- elif i == 1:
225
- col.button("Excel", key="excel")
226
- else:
227
- col.button("SQL", key="sql")
228
-
229
- # Redirect to the corresponding page when a button is clicked
230
- if st.session_state.button_clicked:
231
- if st.session_state.button_clicked == "python":
232
- st.session_state.redirect_to = "python"
233
- elif st.session_state.button_clicked == "machine_learning":
234
- st.session_state.redirect_to = "machine_learning"
235
- elif st.session_state.button_clicked == "deep_learning":
236
- st.session_state.redirect_to = "deep_learning"
237
- elif st.session_state.button_clicked == "statistics":
238
- st.session_state.redirect_to = "statistics"
239
- elif st.session_state.button_clicked == "excel":
240
- st.session_state.redirect_to = "excel"
241
- elif st.session_state.button_clicked == "sql":
242
- st.session_state.redirect_to = "sql"
243
-
244
- # Redirect to the corresponding page
245
- if "redirect_to" in st.session_state:
246
- if st.session_state.redirect_to == "python":
247
- python()
248
- elif st.session_state.redirect_to == "machine_learning":
249
- machine_learning()
250
- elif st.session_state.redirect_to == "deep_learning":
251
- deep_learning()
252
- elif st.session_state.redirect_to == "statistics":
253
- statistics()
254
- elif st.session_state.redirect_to == "excel":
255
- excel()
256
- elif st.session_state.redirect_to == "sql":
257
- sql()
258
-
259
- # Load the models
260
- python_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
261
- machine_learning_model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
262
- deep_learning_model = AutoModelForSequenceClassification.from_pretrained('roberta-base')
263
- statistics_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
264
- excel_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
265
- sql_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
266
-
267
- # Define the main functions for each module
268
- def python():
269
- st.write("Python Module")
270
-
271
- def machine_learning():
272
- st.write("Machine Learning Module")
273
 
274
- def deep_learning():
275
- st.write("Deep Learning Module")
276
-
277
- def statistics():
278
- st.write("Statistics Module")
279
-
280
- def excel():
281
- st.write("Excel Module")
282
-
283
- def sql():
284
- st.write("SQL Module")
285
-
286
- # Run the main function
287
- python()
288
- ```
289
-
290
- However, the above code is still not ideal because it's not using the Hugging Face library to load the models in a more efficient way. Here's a revised version of the code that uses the Hugging Face library to load the models in a more efficient way:
291
-
292
- ```python
293
- import streamlit as st
294
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
295
- import pandas as pd
296
- import numpy as np
297
-
298
- # Set the background color of the dashboard
299
- st.set_page_config(layout="wide")
300
  st.markdown(
301
  """
302
- # Innomatics Online Trainer Bot
303
- Welcome to Innomatics Online Trainer Bot. This platform is designed to provide you with interactive learning experiences in various fields.
304
- """
 
 
 
 
 
 
 
305
  )
306
 
307
- # Introduction
308
- st.write("")
309
-
310
- # Question
311
- st.write("In which module do you have doubt?")
312
-
313
- # Create a multi-column layout for the buttons
314
- with st.expander("Select a module"):
315
- columns = st.columns(6)
316
- for i, col in enumerate(columns):
317
- if i < 3:
318
- col.button("Python", key="python")
319
- elif i < 6:
320
- col.button("Machine Learning", key="machine_learning")
321
- else:
322
- col.button("Deep Learning", key="deep_learning")
323
- if i == 0:
324
- col.button("Statistics", key="statistics")
325
- elif i == 1:
326
- col.button("Excel", key="excel")
327
- else:
328
- col.button("SQL", key="sql")
329
-
330
- # Redirect to the corresponding page when a button is clicked
331
- if st.session_state.button_clicked:
332
- if st.session_state.button_clicked == "python":
333
- st.session_state.redirect_to = "python"
334
- elif st.session_state.button_clicked == "machine_learning":
335
- st.session_state.redirect_to = "machine_learning"
336
- elif st.session_state.button_clicked == "deep_learning":
337
- st.session_state.redirect_to = "deep_learning"
338
- elif st.session_state.button_clicked == "statistics":
339
- st.session_state.redirect_to = "statistics"
340
- elif st.session_state.button_clicked == "excel":
341
- st.session_state.redirect_to = "excel"
342
- elif st.session_state.button_clicked == "sql":
343
- st.session_state.redirect_to = "sql"
344
-
345
- # Redirect to the corresponding page
346
- if "redirect_to" in st.session_state:
347
- if st.session_state.redirect_to == "python":
348
- python()
349
- elif st.session_state.redirect_to == "machine_learning":
350
- machine_learning()
351
- elif st.session_state.redirect_to == "deep_learning":
352
- deep_learning()
353
- elif st.session_state.redirect_to == "statistics":
354
- statistics()
355
- elif st.session_state.redirect_to == "excel":
356
- excel()
357
- elif st.session_state.redirect_to == "sql":
358
- sql()
359
-
360
- # Load the models
361
- python_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
362
- machine_learning_model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
363
- deep_learning_model = AutoModelForSequenceClassification.from_pretrained('roberta-base')
364
- statistics_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
365
- excel_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
366
- sql_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
367
-
368
- # Define the main functions for each module
369
- def python():
370
- st.write("Python Module")
371
-
372
- def machine_learning():
373
- st.write("Machine Learning Module")
374
-
375
- def deep_learning():
376
- st.write("Deep Learning Module")
377
-
378
- def statistics():
379
- st.write("Statistics Module")
380
-
381
- def excel():
382
- st.write("Excel Module")
383
-
384
- def sql():
385
- st.write("SQL Module")
386
-
387
- # Run the main function
388
- python()
389
- ```
390
-
391
- However, the above code is still not ideal because it's not using the Hugging Face library to load the models in a more efficient way. Here's a revised version of the code that uses the Hugging Face library to load the models in a more efficient way:
392
-
393
- ```python
394
- import streamlit as st
395
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
396
- import pandas as pd
397
- import numpy as np
398
-
399
- # Set the background color of the dashboard
400
- st.set_page_config(layout="wide")
401
- st.markdown(
402
- """
403
- # Innomatics Online Trainer Bot
404
- Welcome to Innomatics Online Trainer Bot. This platform is designed to provide you with interactive learning experiences in various fields.
405
- """
406
- )
407
 
408
  # Introduction
409
- st.write("")
410
-
411
- # Question
412
- st.write("In which module do you have doubt?")
413
-
414
- # Create a multi-column layout for the buttons
415
- with st.expander("Select a module"):
416
- columns = st.columns(6)
417
- for i, col in enumerate(columns):
418
- if i < 3:
419
- col.button("Python", key="python")
420
- elif i < 6:
421
- col.button("Machine Learning", key="machine_learning")
422
- else:
423
- col.button("Deep Learning", key="deep_learning")
424
- if i == 0:
425
- col.button("Statistics", key="statistics")
426
- elif i == 1:
427
- col.button("Excel", key="excel")
428
- else:
429
- col.button("SQL", key="sql")
430
-
431
- # Redirect to the corresponding page when a button is clicked
432
- if st.session_state.button_clicked:
433
- if st.session_state.button_clicked == "python":
434
- st.session_state.redirect_to = "python"
435
- elif st.session_state.button_clicked == "machine_learning":
436
- st.session_state.redirect_to = "machine_learning"
437
- elif st.session_state.button_clicked == "deep_learning":
438
- st.session_state.redirect_to = "deep_learning"
439
- elif st.session_state.button_clicked == "statistics":
440
- st.session_state.redirect_to = "statistics"
441
- elif st.session_state.button_clicked == "excel":
442
- st.session_state.redirect_to = "excel"
443
- elif st.session_state.button_clicked == "sql":
444
- st.session_state.redirect_to = "sql"
445
-
446
- # Redirect to the corresponding page
447
- if "redirect_to" in st.session_state:
448
- if st.session_state.redirect_to == "python":
449
- python()
450
- elif st.session_state.redirect_to == "machine_learning":
451
- machine_learning()
452
- elif st.session_state.redirect_to == "deep_learning":
453
- deep_learning()
454
- elif st.session_state.redirect_to == "statistics":
455
- statistics()
456
- elif st.session_state.redirect_to == "excel":
457
- excel()
458
- elif st.session_state.redirect_to == "sql":
459
- sql()
460
-
461
- # Load the models
462
- python_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
463
- machine_learning_model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
464
- deep_learning_model = AutoModelForSequenceClassification.from_pretrained('roberta-base')
465
- statistics_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
466
- excel_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
467
- sql_model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased')
468
-
469
- # Define the main functions for each module
470
- def python():
471
- st.write("Python Module")
472
-
473
- def machine_learning():
474
- st.write("Machine Learning Module")
475
-
476
- def deep_learning():
477
- st.write("Deep Learning Module")
478
-
479
- def statistics():
480
- st.write("Statistics Module")
481
-
482
- def excel():
483
- st.write("Excel Module")
484
-
485
- def sql():
486
- st.write("SQL Module")
487
-
488
- # Run the main function
489
- python()
490
- ```
491
-
492
- However, the above code is still not ideal because it's not using the Hugging Face library to load the models in a more efficient way. Here's a revised version of the code that uses the Hugging Face library to load the models in a more efficient way:
493
-
494
- ```python
495
- import streamlit as st
496
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
497
- import pandas as pd
498
- import numpy as np
499
-
500
- # Set the background color of the dashboard
501
- st.set_page_config(layout="wide")
502
- st.markdown(
503
- """
504
- # Innomatics Online Trainer Bot
505
- Welcome to Innomatics Online Trainer Bot. This platform is designed to provide you with interactive learning experiences in various fields.
506
- """
507
- )
508
-
509
- # Introduction
510
- st.write("")
511
-
512
- # Question
513
- st.write("In which module do you have doubt?")
514
-
515
- # Create a multi-column layout for the buttons
516
- with st.expander("Select a module"):
517
- columns = st.columns(6)
518
- for i, col in enumerate(columns):
519
- if i < 3:
520
- col.button("Python", key="python")
521
- elif i < 6:
522
- col.button("Machine Learning", key="machine_learning")
523
- else:
524
- col.button("Deep Learning", key="deep_learning")
525
- if i == 0:
526
- col.button("Statistics", key="statistics")
527
- elif i == 1:
528
- col.button("Excel", key="excel")
529
- else:
530
- col.button("SQL", key="sql")
531
-
532
- # Redirect to the corresponding page when a button is clicked
533
- if st.session_state.button_clicked:
534
- if st.session_state.button_clicked == "python":
535
- st.session_state.redirect_to = "python"
536
- elif st.session_state.button_clicked == "machine_learning":
537
- st.session_state.redirect_to = "machine_learning"
538
- elif st.session_state.button_clicked == "deep_learning":
539
- st.session_state.redirect_to = "deep_learning"
540
- elif st.session_state.button_clicked == "statistics":
541
- st.session_state.redirect_to = "deep_learning"
 
1
  import streamlit as st
 
 
2
 
3
+ # Set page config
4
+ st.set_page_config(page_title="Innomatics Online Trainer Bot", layout="centered")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # Background color using HTML/CSS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  st.markdown(
8
  """
9
+ <style>
10
+ .main {
11
+ background-color: #8B0000; /* Brownish red */
12
+ }
13
+ h1, h3, p {
14
+ color: white;
15
+ }
16
+ </style>
17
+ """,
18
+ unsafe_allow_html=True
19
  )
20
 
21
+ # Title
22
+ st.title("Innomatics Online Trainer Bot")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  # Introduction
25
+ st.markdown("### 👋 Welcome to the Innomatics Online Trainer Bot!")
26
+ st.markdown("This dashboard will guide you through your doubts in various modules.")
27
+
28
+ # Prompt
29
+ st.markdown("## In which module do you have doubt?")
30
+
31
+ # Create buttons in a 2-column layout
32
+ col1, col2 = st.columns(2)
33
+ with col1:
34
+ if st.button("Python"):
35
+ st.switch_page("python.py")
36
+ with col2:
37
+ if st.button("Machine Learning"):
38
+ st.switch_page("machine_learning.py")
39
+
40
+ col3, col4 = st.columns(2)
41
+ with col3:
42
+ if st.button("Deep Learning"):
43
+ st.switch_page("deep_learning.py")
44
+ with col4:
45
+ if st.button("Statistics"):
46
+ st.switch_page("statistics.py")
47
+
48
+ col5, col6 = st.columns(2)
49
+ with col5:
50
+ if st.button("Excel"):
51
+ st.switch_page("excel.py")
52
+ with col6:
53
+ if st.button("SQL"):
54
+ st.switch_page("sql.py")