File size: 4,551 Bytes
d565963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import requests
import json

MCP_URL = "https://huggingface.co/mcp"
HEADERS = {
    "Content-Type": "application/json",
    "Accept": "application/json, text/event-stream"
}

def call_mcp_tool(method, params):
    payload = {
        "jsonrpc": "2.0",
        "method": method,
        "params": params,
        "id": 1
    }
    response = requests.post(MCP_URL, headers=HEADERS, data=json.dumps(payload))
    try:
        return response.json()
    except Exception as e:
        return {"error": str(e), "raw_response": response.text}

def space_search(query, limit=10, mcp=False):
    params = {
        "query": query,
        "limit": limit,
        "mcp": mcp
    }
    result = call_mcp_tool("tools/call", {"tool": "space_search", "input": params})
    return result

def model_detail(model_id):
    params = {
        "model_id": model_id
    }
    result = call_mcp_tool("tools/call", {"tool": "model_detail", "input": params})
    return result

def paper_search(query, results_limit=12, concise_only=False):
    params = {
        "query": query,
        "results_limit": results_limit,
        "concise_only": concise_only
    }
    result = call_mcp_tool("tools/call", {"tool": "paper_search", "input": params})
    return result

def dataset_search(query="", author="", tags=None, limit=20, sort="downloads"):
    if tags is None:
        tags = []
    params = {
        "query": query,
        "author": author,
        "tags": tags,
        "limit": limit,
        "sort": sort
    }
    result = call_mcp_tool("tools/call", {"tool": "dataset_search", "input": params})
    return result

def dataset_detail(dataset_id):
    params = {
        "dataset_id": dataset_id
    }
    result = call_mcp_tool("tools/call", {"tool": "dataset_detail", "input": params})
    return result

def duplicate_space(sourceSpaceId, newSpaceId="", hardware="freecpu", private=True):
    params = {
        "sourceSpaceId": sourceSpaceId,
        "newSpaceId": newSpaceId,
        "hardware": hardware,
        "private": private
    }
    result = call_mcp_tool("tools/call", {"tool": "duplicate_space", "input": params})
    return result

with gr.Blocks() as demo:
    gr.Markdown("# MCP Gradio Client")

    with gr.Tab("Space Search"):
        query = gr.Textbox(label="Query")
        limit = gr.Slider(1, 50, value=10, label="Limit")
        mcp = gr.Checkbox(label="MCP Only")
        output = gr.JSON()
        btn = gr.Button("Search")
        btn.click(space_search, inputs=[query, limit, mcp], outputs=output)

    with gr.Tab("Model Detail"):
        model_id = gr.Textbox(label="Model ID")
        output = gr.JSON()
        btn = gr.Button("Get Details")
        btn.click(model_detail, inputs=model_id, outputs=output)

    with gr.Tab("Paper Search"):
        query = gr.Textbox(label="Query")
        results_limit = gr.Slider(1, 50, value=12, label="Results Limit")
        concise_only = gr.Checkbox(label="Concise Only")
        output = gr.JSON()
        btn = gr.Button("Search")
        btn.click(paper_search, inputs=[query, results_limit, concise_only], outputs=output)

    with gr.Tab("Dataset Search"):
        query = gr.Textbox(label="Query")
        author = gr.Textbox(label="Author")
        tags = gr.Textbox(label="Tags (comma-separated)")
        limit = gr.Slider(1, 100, value=20, label="Limit")
        sort = gr.Dropdown(choices=["downloads", "likes", "lastModified"], value="downloads", label="Sort By")
        output = gr.JSON()
        btn = gr.Button("Search")
        def parse_tags(tags_str):
            return [tag.strip() for tag in tags_str.split(",") if tag.strip()]
        btn.click(lambda q, a, t, l, s: dataset_search(q, a, parse_tags(t), l, s),
                  inputs=[query, author, tags, limit, sort], outputs=output)

    with gr.Tab("Dataset Detail"):
        dataset_id = gr.Textbox(label="Dataset ID")
        output = gr.JSON()
        btn = gr.Button("Get Details")
        btn.click(dataset_detail, inputs=dataset_id, outputs=output)

    with gr.Tab("Duplicate Space"):
        sourceSpaceId = gr.Textbox(label="Source Space ID")
        newSpaceId = gr.Textbox(label="New Space ID")
        hardware = gr.Dropdown(choices=["freecpu", "zerogpu"], value="freecpu", label="Hardware")
        private = gr.Checkbox(label="Private", value=True)
        output = gr.JSON()
        btn = gr.Button("Duplicate")
        btn.click(duplicate_space, inputs=[sourceSpaceId, newSpaceId, hardware, private], outputs=output)

demo.launch(mcp_server=True,share=True,debug=True)