Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.attention_processor import AttentionProcessor | |
from diffusers.models.transformers.transformer_ltx import LTXVideoTransformer3DModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class NAGLTXVideoTransformer3DModel(LTXVideoTransformer3DModel): | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_attention_mask: torch.Tensor, | |
num_frames: Optional[int] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
rope_interpolation_scale: Optional[Union[Tuple[float, float, float], torch.Tensor]] = None, | |
video_coords: Optional[torch.Tensor] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> torch.Tensor: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale, video_coords) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
batch_size = hidden_states.size(0) | |
hidden_states = self.proj_in(hidden_states) | |
temb, embedded_timestep = self.time_embed( | |
timestep.flatten(), | |
batch_size=batch_size, | |
hidden_dtype=hidden_states.dtype, | |
) | |
temb = temb.view(batch_size, -1, temb.size(-1)) | |
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1)) | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.view(len(encoder_hidden_states), -1, hidden_states.size(-1)) | |
for block in self.transformer_blocks: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
encoder_attention_mask, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] | |
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = hidden_states * (1 + scale) + shift | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |