NAG_ltx-video-distilled / src /attention_ltx_nag.py
ChenDY's picture
upload
314a296
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_ltx import apply_rotary_emb
class NAGLTXVideoAttentionProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector.
"""
def __init__(self, nag_scale=1.0, nag_tau=2.5, nag_alpha=0.5):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.nag_scale = nag_scale
self.nag_tau = nag_tau
self.nag_alpha = nag_alpha
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
apply_guidance = self.nag_scale > 1 and encoder_hidden_states is not None
if apply_guidance:
origin_batch_size = len(encoder_hidden_states) - len(hidden_states)
assert origin_batch_size > 0
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(attn.heads, -1, attention_mask.shape[-1])
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.norm_q(query)
key = attn.norm_k(key)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
if apply_guidance:
query = torch.cat([query, query[-origin_batch_size:]], dim=0)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
if apply_guidance:
hidden_states_negative, hidden_states_positive = hidden_states[-origin_batch_size:], hidden_states[-origin_batch_size * 2:-origin_batch_size]
hidden_states_guidance = hidden_states_positive * self.nag_scale - hidden_states_negative * (self.nag_scale - 1)
norm_positive = torch.norm(hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape)
norm_guidance = torch.norm(hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape)
scale = norm_guidance / norm_positive
hidden_states_guidance = hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale
hidden_states_guidance = hidden_states_guidance * self.nag_alpha + hidden_states_positive * (1 - self.nag_alpha)
hidden_states = torch.cat([hidden_states[:-origin_batch_size * 2], hidden_states_guidance], dim=0)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states