File size: 26,355 Bytes
314a296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import inspect
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import PIL.Image
import torch
from transformers import T5EncoderModel, T5TokenizerFast

from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput
from diffusers.loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
from diffusers.models.autoencoders import AutoencoderKLLTXVideo
from diffusers.models.transformers import LTXVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_torch_xla_available, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXConditionPipeline, linear_quadratic_schedule, rescale_noise_cfg, retrieve_timesteps, LTXVideoCondition

from src.attention_ltx_nag import NAGLTXVideoAttentionProcessor2_0


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class NAGLTXConditionPipeline(LTXConditionPipeline):
    @property
    def do_normalized_attention_guidance(self):
        return self._nag_scale > 1

    def _set_nag_attn_processor(self, nag_scale, nag_tau, nag_alpha):
        attn_procs = {}
        for name, origin_attn_proc in self.transformer.attn_processors.items():
            if "attn2" in name:
                attn_procs[name] = NAGLTXVideoAttentionProcessor2_0(
                    nag_scale=nag_scale, nag_tau=nag_tau, nag_alpha=nag_alpha)
            else:
                attn_procs[name] = origin_attn_proc
        self.transformer.set_attn_processor(attn_procs)

    @torch.no_grad()
    def __call__(
            self,
            conditions: Union[LTXVideoCondition, List[LTXVideoCondition]] = None,
            image: Union[PipelineImageInput, List[PipelineImageInput]] = None,
            video: List[PipelineImageInput] = None,
            frame_index: Union[int, List[int]] = 0,
            strength: Union[float, List[float]] = 1.0,
            denoise_strength: float = 1.0,
            prompt: Union[str, List[str]] = None,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            height: int = 512,
            width: int = 704,
            num_frames: int = 161,
            frame_rate: int = 25,
            num_inference_steps: int = 50,
            timesteps: List[int] = None,
            guidance_scale: float = 3,
            guidance_rescale: float = 0.0,
            image_cond_noise_scale: float = 0.15,
            num_videos_per_prompt: Optional[int] = 1,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.Tensor] = None,
            prompt_embeds: Optional[torch.Tensor] = None,
            prompt_attention_mask: Optional[torch.Tensor] = None,
            negative_prompt_embeds: Optional[torch.Tensor] = None,
            negative_prompt_attention_mask: Optional[torch.Tensor] = None,
            decode_timestep: Union[float, List[float]] = 0.0,
            decode_noise_scale: Optional[Union[float, List[float]]] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            attention_kwargs: Optional[Dict[str, Any]] = None,
            callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
            callback_on_step_end_tensor_inputs: List[str] = ["latents"],
            max_sequence_length: int = 256,

            nag_scale: float = 1.0,
            nag_tau: float = 3.5,
            nag_alpha: float = 0.5,
            nag_negative_prompt: str = None,
            nag_negative_prompt_embeds: Optional[torch.Tensor] = None,
            nag_negative_prompt_attention_mask: Optional[torch.Tensor] = None,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            conditions (`List[LTXVideoCondition], *optional*`):
                The list of frame-conditioning items for the video generation.If not provided, conditions will be
                created using `image`, `video`, `frame_index` and `strength`.
            image (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
                The image or images to condition the video generation. If not provided, one has to pass `video` or
                `conditions`.
            video (`List[PipelineImageInput]`, *optional*):
                The video to condition the video generation. If not provided, one has to pass `image` or `conditions`.
            frame_index (`int` or `List[int]`, *optional*):
                The frame index or frame indices at which the image or video will conditionally effect the video
                generation. If not provided, one has to pass `conditions`.
            strength (`float` or `List[float]`, *optional*):
                The strength or strengths of the conditioning effect. If not provided, one has to pass `conditions`.
            denoise_strength (`float`, defaults to `1.0`):
                The strength of the noise added to the latents for editing. Higher strength leads to more noise added
                to the latents, therefore leading to more differences between original video and generated video. This
                is useful for video-to-video editing.
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, defaults to `512`):
                The height in pixels of the generated image. This is set to 480 by default for the best results.
            width (`int`, defaults to `704`):
                The width in pixels of the generated image. This is set to 848 by default for the best results.
            num_frames (`int`, defaults to `161`):
                The number of video frames to generate
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, defaults to `3 `):
                Guidance scale as defined in [Classifier-Free Diffusion
                Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
                of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
                `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
                the text `prompt`, usually at the expense of lower image quality.
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
                Guidance rescale factor should fix overexposure when using zero terminal SNR.
            num_videos_per_prompt (`int`, *optional*, defaults to 1):
                The number of videos to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_attention_mask (`torch.Tensor`, *optional*):
                Pre-generated attention mask for text embeddings.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
                provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
            negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
                Pre-generated attention mask for negative text embeddings.
            decode_timestep (`float`, defaults to `0.0`):
                The timestep at which generated video is decoded.
            decode_noise_scale (`float`, defaults to `None`):
                The interpolation factor between random noise and denoised latents at the decode timestep.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
            attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to `128 `):
                Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt=prompt,
            conditions=conditions,
            image=image,
            video=video,
            frame_index=frame_index,
            strength=strength,
            denoise_strength=denoise_strength,
            height=height,
            width=width,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._attention_kwargs = attention_kwargs
        self._interrupt = False
        self._current_timestep = None
        self._nag_scale = nag_scale

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if conditions is not None:
            if not isinstance(conditions, list):
                conditions = [conditions]

            strength = [condition.strength for condition in conditions]
            frame_index = [condition.frame_index for condition in conditions]
            image = [condition.image for condition in conditions]
            video = [condition.video for condition in conditions]
        elif image is not None or video is not None:
            if not isinstance(image, list):
                image = [image]
                num_conditions = 1
            elif isinstance(image, list):
                num_conditions = len(image)
            if not isinstance(video, list):
                video = [video]
                num_conditions = 1
            elif isinstance(video, list):
                num_conditions = len(video)

            if not isinstance(frame_index, list):
                frame_index = [frame_index] * num_conditions
            if not isinstance(strength, list):
                strength = [strength] * num_conditions

        device = self._execution_device
        vae_dtype = self.vae.dtype

        # 3. Prepare text embeddings & conditioning image/video
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            num_videos_per_prompt=num_videos_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            max_sequence_length=max_sequence_length,
            device=device,
        )
        if self.do_normalized_attention_guidance:
            if nag_negative_prompt_embeds is None:
                if nag_negative_prompt is None:
                    if self.do_classifier_free_guidance:
                        nag_negative_prompt_embeds = negative_prompt_embeds
                    else:
                        nag_negative_prompt = negative_prompt or ""

                if nag_negative_prompt is not None:
                    nag_negative_prompt_embeds = self.encode_prompt(
                        prompt=nag_negative_prompt,
                        do_classifier_free_guidance=False,
                        num_videos_per_prompt=num_videos_per_prompt,
                        prompt_attention_mask=nag_negative_prompt_attention_mask,
                        max_sequence_length=max_sequence_length,
                        device=device,
                    )[0]

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
        if self.do_normalized_attention_guidance:
            prompt_embeds = torch.cat([prompt_embeds, nag_negative_prompt_embeds], dim=0)

        conditioning_tensors = []
        is_conditioning_image_or_video = image is not None or video is not None
        if is_conditioning_image_or_video:
            for condition_image, condition_video, condition_frame_index, condition_strength in zip(
                    image, video, frame_index, strength
            ):
                if condition_image is not None:
                    condition_tensor = (
                        self.video_processor.preprocess(condition_image, height, width)
                        .unsqueeze(2)
                        .to(device, dtype=vae_dtype)
                    )
                elif condition_video is not None:
                    condition_tensor = self.video_processor.preprocess_video(condition_video, height, width)
                    num_frames_input = condition_tensor.size(2)
                    num_frames_output = self.trim_conditioning_sequence(
                        condition_frame_index, num_frames_input, num_frames
                    )
                    condition_tensor = condition_tensor[:, :, :num_frames_output]
                    condition_tensor = condition_tensor.to(device, dtype=vae_dtype)
                else:
                    raise ValueError("Either `image` or `video` must be provided for conditioning.")

                if condition_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
                    raise ValueError(
                        f"Number of frames in the video must be of the form (k * {self.vae_temporal_compression_ratio} + 1) "
                        f"but got {condition_tensor.size(2)} frames."
                    )
                conditioning_tensors.append(condition_tensor)

        # 4. Prepare timesteps
        latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
        latent_height = height // self.vae_spatial_compression_ratio
        latent_width = width // self.vae_spatial_compression_ratio
        if timesteps is None:
            sigmas = linear_quadratic_schedule(num_inference_steps)
            timesteps = sigmas * 1000
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        sigmas = self.scheduler.sigmas
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        latent_sigma = None
        if denoise_strength < 1:
            sigmas, timesteps, num_inference_steps = self.get_timesteps(
                sigmas, timesteps, num_inference_steps, denoise_strength
            )
            latent_sigma = sigmas[:1].repeat(batch_size * num_videos_per_prompt)

        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents, conditioning_mask, video_coords, extra_conditioning_num_latents = self.prepare_latents(
            conditioning_tensors,
            strength,
            frame_index,
            batch_size=batch_size * num_videos_per_prompt,
            num_channels_latents=num_channels_latents,
            height=height,
            width=width,
            num_frames=num_frames,
            sigma=latent_sigma,
            latents=latents,
            generator=generator,
            device=device,
            dtype=torch.float32,
        )

        video_coords = video_coords.float()
        video_coords[:, 0] = video_coords[:, 0] * (1.0 / frame_rate)

        init_latents = latents.clone() if is_conditioning_image_or_video else None

        if self.do_classifier_free_guidance:
            video_coords = torch.cat([video_coords, video_coords], dim=0)

        if self.do_normalized_attention_guidance:
            origin_attn_procs = self.transformer.attn_processors
            self._set_nag_attn_processor(nag_scale, nag_tau, nag_alpha)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                self._current_timestep = t

                if image_cond_noise_scale > 0 and init_latents is not None:
                    # Add timestep-dependent noise to the hard-conditioning latents
                    # This helps with motion continuity, especially when conditioned on a single frame
                    latents = self.add_noise_to_image_conditioning_latents(
                        t / 1000.0,
                        init_latents,
                        latents,
                        image_cond_noise_scale,
                        conditioning_mask,
                        generator,
                    )

                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                if is_conditioning_image_or_video:
                    conditioning_mask_model_input = (
                        torch.cat([conditioning_mask, conditioning_mask])
                        if self.do_classifier_free_guidance
                        else conditioning_mask
                    )
                latent_model_input = latent_model_input.to(prompt_embeds.dtype)

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0]).unsqueeze(-1).float()
                if is_conditioning_image_or_video:
                    timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timestep,
                    encoder_attention_mask=prompt_attention_mask,
                    video_coords=video_coords,
                    attention_kwargs=attention_kwargs,
                    return_dict=False,
                )[0]

                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
                    timestep, _ = timestep.chunk(2)

                    if self.guidance_rescale > 0:
                        # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                        noise_pred = rescale_noise_cfg(
                            noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
                        )

                denoised_latents = self.scheduler.step(
                    -noise_pred, t, latents, per_token_timesteps=timestep, return_dict=False
                )[0]
                if is_conditioning_image_or_video:
                    tokens_to_denoise_mask = (t / 1000 - 1e-6 < (1.0 - conditioning_mask)).unsqueeze(-1)
                    latents = torch.where(tokens_to_denoise_mask, denoised_latents, latents)
                else:
                    latents = denoised_latents

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if is_conditioning_image_or_video:
            latents = latents[:, extra_conditioning_num_latents:]

        latents = self._unpack_latents(
            latents,
            latent_num_frames,
            latent_height,
            latent_width,
            self.transformer_spatial_patch_size,
            self.transformer_temporal_patch_size,
        )

        if output_type == "latent":
            video = latents
        else:
            latents = self._denormalize_latents(
                latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
            )
            latents = latents.to(prompt_embeds.dtype)

            if not self.vae.config.timestep_conditioning:
                timestep = None
            else:
                noise = randn_tensor(latents.shape, generator=generator, device=device, dtype=latents.dtype)
                if not isinstance(decode_timestep, list):
                    decode_timestep = [decode_timestep] * batch_size
                if decode_noise_scale is None:
                    decode_noise_scale = decode_timestep
                elif not isinstance(decode_noise_scale, list):
                    decode_noise_scale = [decode_noise_scale] * batch_size

                timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
                decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
                                     :, None, None, None, None
                                     ]
                latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise

            video = self.vae.decode(latents, timestep, return_dict=False)[0]
            video = self.video_processor.postprocess_video(video, output_type=output_type)

        if self.do_normalized_attention_guidance:
            self.transformer.set_attn_processor(origin_attn_procs)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return LTXPipelineOutput(frames=video)