Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,185 Bytes
314a296 334aa3b 314a296 d3d96e3 314a296 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import types
import random
import spaces
import torch
import numpy as np
from diffusers import LTXLatentUpsamplePipeline
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
from src.transformer_ltx_nag import NAGLTXVideoTransformer3DModel
from src.pipeline_ltx_condition import NAGLTXConditionPipeline
MOD_VALUE = 32
DEFAULT_DURATION_SECONDS = 5
DEFAULT_SEED = 2025
DEFAULT_H_SLIDER_VALUE = 480
DEFAULT_W_SLIDER_VALUE = 832
NEW_FORMULA_MAX_AREA = 704.0 * 1216.0
DOWNSCALE_FACTOR = 2 / 3
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 257
DEFAULT_NAG_NEGATIVE_PROMPT = "static, motionless, still, lifeless, dull, frozen, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of detail"
model_id = "Lightricks/LTX-Video-0.9.7-distilled"
transformer = NAGLTXVideoTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
torch_dtype=torch.bfloat16,
)
pipe = NAGLTXConditionPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
examples = [
[
"A rock star passionately plays electric guitar with intensity and emotion on a stage. The background is shrouded in deep darkness. Spotlights casts dramatic shadows.",
DEFAULT_NAG_NEGATIVE_PROMPT,
11,
],
[
"A clear, turquoise river flows through a rocky canyon, cascading over a small waterfall and forming a pool of water at the bottom. The river is the main focus of the scene. The overall tone of the scene is one of peace and tranquility.",
"trees, grass, greenery",
11,
],
[
"A woman with blood on her face and a white tank top looks down and to her right, then back up as she speaks. She has dark hair pulled back, light skin, and her face and chest are covered in blood. The camera angle is a close-up, focused on the woman's face and upper torso. The lighting is dim and blue-toned, creating a somber and intense atmosphere. The scene appears to be from a movie or TV show.",
DEFAULT_NAG_NEGATIVE_PROMPT,
11,
],
]
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipe.vae_spatial_compression_ratio)
width = width - (width % pipe.vae_spatial_compression_ratio)
return height, width
def get_duration(
prompt,
nag_negative_prompt, nag_scale,
height, width, duration_seconds,
seed, randomize_seed,
compare,
):
duration = int(duration_seconds) * 4 + 5
if compare:
duration *= 2
return duration
@spaces.GPU(duration=get_duration)
def generate_video(
prompt,
nag_negative_prompt, nag_scale,
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
seed=DEFAULT_SEED, randomize_seed=False,
compare=True,
):
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
downscaled_height, downscaled_width = int(target_h * DOWNSCALE_FACTOR), int(target_w * DOWNSCALE_FACTOR)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
with torch.inference_mode():
latents = pipe(
conditions=None,
prompt=prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=7,
decode_timestep=0.05,
guidance_scale=1.0,
decode_noise_scale=0.025,
generator=torch.Generator("cuda").manual_seed(current_seed),
output_type="latent",
nag_negative_prompt=nag_negative_prompt,
nag_scale=nag_scale,
).frames
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
nag_output_frames_list = pipe(
prompt=prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.4, # Effectively, 4 inference steps out of 10
num_inference_steps=10,
latents=upscaled_latents,
decode_timestep=0.05,
guidance_scale=1.0,
decode_noise_scale=0.025,
image_cond_noise_scale=0.025,
generator=torch.Generator("cuda").manual_seed(current_seed),
output_type="pil",
nag_negative_prompt=nag_negative_prompt,
nag_scale=nag_scale,
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
nag_video_path = tmpfile.name
export_to_video(nag_output_frames_list, nag_video_path, fps=FIXED_FPS)
if compare:
latents = pipe(
conditions=None,
prompt=prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=7,
decode_timestep=0.05,
guidance_scale=1.0,
decode_noise_scale=0.025,
generator=torch.Generator("cuda").manual_seed(current_seed),
output_type="latent",
).frames
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
baseline_output_frames_list = pipe(
prompt=prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.4, # Effectively, 4 inference steps out of 10
num_inference_steps=10,
latents=upscaled_latents,
decode_timestep=0.05,
guidance_scale=1.0,
decode_noise_scale=0.025,
image_cond_noise_scale=0.025,
generator=torch.Generator("cuda").manual_seed(current_seed),
output_type="pil",
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
baseline_video_path = tmpfile.name
export_to_video(baseline_output_frames_list, baseline_video_path, fps=FIXED_FPS)
else:
baseline_video_path = None
return nag_video_path, baseline_video_path, current_seed
def generate_video_with_example(
prompt,
nag_negative_prompt,
nag_scale,
):
nag_video_path, baseline_video_path, seed = generate_video(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale,
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
seed=DEFAULT_SEED, randomize_seed=False,
compare=True,
)
return nag_video_path, baseline_video_path, \
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \
DEFAULT_DURATION_SECONDS, seed, True
with gr.Blocks() as demo:
gr.Markdown('''# Normalized Attention Guidance (NAG) for [LTX Video 0.9.7 Distilled](https://huggingface.co/Lightricks/LTX-Video-0.9.7-distilled)
NAG demos: [4-Step Wan2.1](https://huggingface.co/spaces/ChenDY/NAG_wan2-1-fast), [FLUX.1-dev](https://huggingface.co/spaces/ChenDY/NAG_FLUX.1-dev), [FLUX.1-schnell](https://huggingface.co/spaces/ChenDY/NAG_FLUX.1-schnell)
[Paper](https://arxiv.org/abs/2505.21179), [GitHub](https://github.com/ChenDarYen/Normalized-Attention-Guidance), [ComfyUI](https://github.com/ChenDarYen/ComfyUI-NAG)
Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/).
''')
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
max_lines=3,
placeholder="Enter your prompt",
)
nag_negative_prompt = gr.Textbox(
label="Negative Prompt for NAG",
value=DEFAULT_NAG_NEGATIVE_PROMPT,
max_lines=3,
)
nag_scale = gr.Slider(label="NAG Scale", minimum=1., maximum=20., step=0.25, value=11.)
compare = gr.Checkbox(
label="Compare with baseline",
info="If unchecked, only sample with NAG will be generated.", value=True,
)
with gr.Accordion("Advanced Settings", open=False):
duration_seconds_input = gr.Slider(
minimum=1, maximum=10, step=1, value=DEFAULT_DURATION_SECONDS,
label="Duration (seconds)",
)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"Output Width (multiple of {MOD_VALUE})")
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
nag_video_output = gr.Video(label="Video with NAG", autoplay=True, interactive=False)
baseline_video_output = gr.Video(label="Baseline Video without NAG", autoplay=True, interactive=False)
gr.Examples(
examples=examples,
fn=generate_video_with_example,
inputs=[prompt, nag_negative_prompt, nag_scale],
outputs=[
nag_video_output, baseline_video_output,
height_input, width_input, duration_seconds_input,
seed_input,
compare,
],
cache_examples="lazy"
)
ui_inputs = [
prompt,
nag_negative_prompt, nag_scale,
height_input, width_input, duration_seconds_input,
seed_input, randomize_seed_checkbox,
compare,
]
generate_button.click(
fn=generate_video,
inputs=ui_inputs,
outputs=[nag_video_output, baseline_video_output, seed_input],
)
if __name__ == "__main__":
demo.queue().launch()
|