Create model_setup.py
Browse files- model_setup.py +83 -0
model_setup.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Helper script to prepare models for deployment
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import zipfile
|
| 7 |
+
import shutil
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
def setup_bert_model():
|
| 11 |
+
"""Extract and setup the fine-tuned BERT model"""
|
| 12 |
+
|
| 13 |
+
zip_path = "fine_tuned_bert_sentiment.zip"
|
| 14 |
+
extract_path = "./fine_tuned_bert_sentiment"
|
| 15 |
+
|
| 16 |
+
if not os.path.exists(zip_path):
|
| 17 |
+
print(f"β {zip_path} not found. Please upload your fine-tuned BERT model.")
|
| 18 |
+
return False
|
| 19 |
+
|
| 20 |
+
print(f"π¦ Extracting {zip_path}...")
|
| 21 |
+
|
| 22 |
+
# Create extraction directory
|
| 23 |
+
os.makedirs(extract_path, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
# Extract zip file
|
| 26 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 27 |
+
zip_ref.extractall(extract_path)
|
| 28 |
+
|
| 29 |
+
# Verify required files exist
|
| 30 |
+
required_files = [
|
| 31 |
+
"config.json",
|
| 32 |
+
"pytorch_model.bin",
|
| 33 |
+
"tokenizer_config.json",
|
| 34 |
+
"vocab.txt"
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
missing_files = []
|
| 38 |
+
for file in required_files:
|
| 39 |
+
if not os.path.exists(os.path.join(extract_path, file)):
|
| 40 |
+
missing_files.append(file)
|
| 41 |
+
|
| 42 |
+
if missing_files:
|
| 43 |
+
print(f"β οΈ Missing required files: {missing_files}")
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
print("β
BERT model setup complete!")
|
| 47 |
+
return True
|
| 48 |
+
|
| 49 |
+
def download_fallback_models():
|
| 50 |
+
"""Download fallback models if needed"""
|
| 51 |
+
from transformers import AutoTokenizer, AutoModel
|
| 52 |
+
|
| 53 |
+
print("π₯ Downloading fallback models...")
|
| 54 |
+
|
| 55 |
+
# Download SigLIP model
|
| 56 |
+
try:
|
| 57 |
+
AutoTokenizer.from_pretrained("google/siglip-large-patch16-384")
|
| 58 |
+
AutoModel.from_pretrained("google/siglip-large-patch16-384")
|
| 59 |
+
print("β
SigLIP-Large downloaded")
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"β οΈ SigLIP-Large download failed: {e}")
|
| 62 |
+
print("π₯ Downloading SigLIP-Base as fallback...")
|
| 63 |
+
AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
| 64 |
+
AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
| 65 |
+
|
| 66 |
+
# Download sentiment model
|
| 67 |
+
AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
| 68 |
+
AutoModel.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
| 69 |
+
print("β
Sentiment model downloaded")
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
print("π Setting up Enhanced Ensemble Model...")
|
| 73 |
+
|
| 74 |
+
# Setup BERT model
|
| 75 |
+
bert_success = setup_bert_model()
|
| 76 |
+
|
| 77 |
+
# Download other models
|
| 78 |
+
download_fallback_models()
|
| 79 |
+
|
| 80 |
+
if bert_success:
|
| 81 |
+
print("π All models ready for deployment!")
|
| 82 |
+
else:
|
| 83 |
+
print("β οΈ Deployment ready with fallback models. Upload your BERT model for best performance.")
|