Spaces:
Runtime error
Runtime error
test
Browse files- .gitattributes +2 -0
- agent.py +216 -0
- app.py +11 -3
- cheatsheet-transformers-large-language-models.pdf +3 -0
- explore_metadata.ipynb +0 -0
- metadata.jsonl +0 -0
- requirements.txt +22 -1
- retriever.py +57 -0
- steps.txt +43 -0
- system_prompt.txt +46 -0
- ็ๆ็นๅฎๅพ็.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
็ๆ็นๅฎๅพ็.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
cheatsheet-transformers-large-language-models.pdf filter=lfs diff=lfs merge=lfs -text
|
agent.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
+
from langgraph.prebuilt import tools_condition
|
6 |
+
from langgraph.prebuilt import ToolNode
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
+
from langchain_community.document_loaders import WikipediaLoader
|
12 |
+
from langchain_community.document_loaders import ArxivLoader
|
13 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
14 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
+
from langchain_core.tools import tool
|
16 |
+
from langchain.tools.retriever import create_retriever_tool
|
17 |
+
from supabase.client import Client, create_client
|
18 |
+
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
|
22 |
+
@tool
|
23 |
+
def multiply(a: int, b: int) -> int:
|
24 |
+
"""Multiply two numbers.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
a: first int
|
28 |
+
b: second int
|
29 |
+
"""
|
30 |
+
return a * b
|
31 |
+
|
32 |
+
@tool
|
33 |
+
def add(a: int, b: int) -> int:
|
34 |
+
"""Add two numbers.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
a: first int
|
38 |
+
b: second int
|
39 |
+
"""
|
40 |
+
return a + b
|
41 |
+
|
42 |
+
@tool
|
43 |
+
def subtract(a: int, b: int) -> int:
|
44 |
+
"""Subtract two numbers.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
a: first int
|
48 |
+
b: second int
|
49 |
+
"""
|
50 |
+
return a - b
|
51 |
+
|
52 |
+
@tool
|
53 |
+
def divide(a: int, b: int) -> int:
|
54 |
+
"""Divide two numbers.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
a: first int
|
58 |
+
b: second int
|
59 |
+
"""
|
60 |
+
if b == 0:
|
61 |
+
raise ValueError("Cannot divide by zero.")
|
62 |
+
return a / b
|
63 |
+
|
64 |
+
@tool
|
65 |
+
def modulus(a: int, b: int) -> int:
|
66 |
+
"""Get the modulus of two numbers.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
a: first int
|
70 |
+
b: second int
|
71 |
+
"""
|
72 |
+
return a % b
|
73 |
+
|
74 |
+
@tool
|
75 |
+
def wiki_search(query: str) -> str:
|
76 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
query: The search query."""
|
80 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
81 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
82 |
+
[
|
83 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
84 |
+
for doc in search_docs
|
85 |
+
])
|
86 |
+
return {"wiki_results": formatted_search_docs}
|
87 |
+
|
88 |
+
@tool
|
89 |
+
def web_search(query: str) -> str:
|
90 |
+
"""Search Tavily for a query and return maximum 3 results.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
query: The search query."""
|
94 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
95 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
96 |
+
[
|
97 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
98 |
+
for doc in search_docs
|
99 |
+
])
|
100 |
+
return {"web_results": formatted_search_docs}
|
101 |
+
|
102 |
+
@tool
|
103 |
+
def arvix_search(query: str) -> str:
|
104 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
query: The search query."""
|
108 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
109 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
110 |
+
[
|
111 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
112 |
+
for doc in search_docs
|
113 |
+
])
|
114 |
+
return {"arvix_results": formatted_search_docs}
|
115 |
+
|
116 |
+
|
117 |
+
# load the system prompt from the file
|
118 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
119 |
+
system_prompt = f.read()
|
120 |
+
|
121 |
+
# System message
|
122 |
+
sys_msg = SystemMessage(content=system_prompt)
|
123 |
+
|
124 |
+
# build a retriever with existing supabase
|
125 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
126 |
+
supabase: Client = create_client(
|
127 |
+
os.environ.get("SUPABASE_URL"),
|
128 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
129 |
+
vector_store = SupabaseVectorStore(
|
130 |
+
client=supabase,
|
131 |
+
embedding= embeddings,
|
132 |
+
table_name=os.getenv('TABLE_NAME'),
|
133 |
+
query_name=os.getenv('QUERY_NAME'),
|
134 |
+
)
|
135 |
+
create_retriever_tool = create_retriever_tool(
|
136 |
+
retriever=vector_store.as_retriever(),
|
137 |
+
name="Question Search",
|
138 |
+
description="A tool to retrieve similar questions from a vector store.",
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
tools = [
|
143 |
+
multiply,
|
144 |
+
add,
|
145 |
+
subtract,
|
146 |
+
divide,
|
147 |
+
modulus,
|
148 |
+
wiki_search,
|
149 |
+
web_search,
|
150 |
+
arvix_search,
|
151 |
+
]
|
152 |
+
|
153 |
+
# Build graph function
|
154 |
+
def build_graph(provider: str = "groq"):
|
155 |
+
"""Build the graph"""
|
156 |
+
# Load environment variables from .env file
|
157 |
+
if provider == "google":
|
158 |
+
# Google Gemini
|
159 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
160 |
+
elif provider == "groq":
|
161 |
+
print("choose groq=====================================")
|
162 |
+
# Groq https://console.groq.com/docs/models
|
163 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
164 |
+
elif provider == "huggingface":
|
165 |
+
print("choose huggingface===============================================")
|
166 |
+
# TODO: Add huggingface endpoint
|
167 |
+
llm = ChatHuggingFace(
|
168 |
+
llm=HuggingFaceEndpoint(
|
169 |
+
model='Meta-DeepLearning/llama-2-7b-chat-hf',
|
170 |
+
endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
171 |
+
temperature=0,
|
172 |
+
),
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
176 |
+
# Bind tools to LLM
|
177 |
+
llm_with_tools = llm.bind_tools(tools)
|
178 |
+
|
179 |
+
# Node
|
180 |
+
def assistant(state: MessagesState):
|
181 |
+
"""Assistant node"""
|
182 |
+
return {"messages": [llm_with_tools.invoke( state["messages"])]}
|
183 |
+
|
184 |
+
def retriever(state: MessagesState):
|
185 |
+
"""Retriever node"""
|
186 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
187 |
+
example_msg = [HumanMessage(
|
188 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
189 |
+
)]
|
190 |
+
return {"messages": [sys_msg] +state["messages"] + example_msg}
|
191 |
+
|
192 |
+
builder = StateGraph(MessagesState)
|
193 |
+
builder.add_node("retriever", retriever)
|
194 |
+
builder.add_node("assistant", assistant)
|
195 |
+
builder.add_node("tools", ToolNode(tools))
|
196 |
+
builder.add_edge(START, "retriever")
|
197 |
+
builder.add_edge("retriever", "assistant")
|
198 |
+
builder.add_conditional_edges(
|
199 |
+
"assistant",
|
200 |
+
tools_condition,
|
201 |
+
)
|
202 |
+
builder.add_edge("tools", "assistant")
|
203 |
+
|
204 |
+
# Compile graph
|
205 |
+
return builder.compile()
|
206 |
+
|
207 |
+
# test
|
208 |
+
if __name__ == "__main__":
|
209 |
+
question = "What's the last line of the rhyme under the flavor name on the headstone visible in the background of the photo of the oldest flavor's headstone in the Ben & Jerry's online flavor graveyard as of the end of 2022?"
|
210 |
+
# Build the graph
|
211 |
+
graph = build_graph(provider="groq")
|
212 |
+
# Run the graph
|
213 |
+
messages = [HumanMessage(content=question)]
|
214 |
+
messages = graph.invoke({"messages": messages})
|
215 |
+
for m in messages["messages"]:
|
216 |
+
m.pretty_print()
|
app.py
CHANGED
@@ -3,6 +3,8 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
@@ -13,11 +15,17 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from agent import build_graph
|
7 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
# --- Constants ---
|
|
|
15 |
class BasicAgent:
|
16 |
def __init__(self):
|
17 |
print("BasicAgent initialized.")
|
18 |
+
self.graph = build_graph()
|
19 |
+
|
20 |
def __call__(self, question: str) -> str:
|
21 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
22 |
+
|
23 |
+
messages = [HumanMessage(content=question)]
|
24 |
+
messages = self.graph.invoke({"messages": messages})
|
25 |
+
answer = messages['messages'][-1].content.split("FINAL ANSWER: ")[-1]
|
26 |
+
|
27 |
+
print(f"Agent returning answer: {answer}")
|
28 |
+
return answer
|
29 |
|
30 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
31 |
"""
|
cheatsheet-transformers-large-language-models.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5f4cba7c54bbe86caf70122b665b1b14d51abad2634bf5c6481eb62fd6a1a3f
|
3 |
+
size 1587084
|
explore_metadata.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
CHANGED
@@ -1,2 +1,23 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
langchain
|
4 |
+
langchain-community
|
5 |
+
langchain-core
|
6 |
+
langchain-google-genai
|
7 |
+
langchain-huggingface
|
8 |
+
langchain-groq
|
9 |
+
langchain-tavily
|
10 |
+
langchain-chroma
|
11 |
+
langgraph
|
12 |
+
huggingface_hub
|
13 |
+
supabase
|
14 |
+
arxiv
|
15 |
+
pymupdf
|
16 |
+
wikipedia
|
17 |
+
pgvector
|
18 |
+
python-dotenv
|
19 |
+
gradio[oauth]>=4.25.0
|
20 |
+
sentence-transformers
|
21 |
+
numpy<2
|
22 |
+
duckduckgo-search
|
23 |
+
langchain_openai
|
retriever.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#build retriever on supabase
|
2 |
+
#create project, table, indexes, and functions
|
3 |
+
#create client with url and key
|
4 |
+
#insert data with embedding
|
5 |
+
#
|
6 |
+
# Load metadata.jsonl
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
11 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
12 |
+
from supabase.client import Client, create_client
|
13 |
+
from langchain.schema import Document
|
14 |
+
|
15 |
+
# Load the metadata.jsonl file
|
16 |
+
with open('metadata.jsonl', 'r') as jsonl_file:
|
17 |
+
json_list = list(jsonl_file)
|
18 |
+
|
19 |
+
json_QA = []
|
20 |
+
for json_str in json_list:
|
21 |
+
json_data = json.loads(json_str)
|
22 |
+
json_QA.append(json_data)
|
23 |
+
|
24 |
+
### build a vector database based on the metadata.jsonl
|
25 |
+
# https://python.langchain.com/docs/integrations/vectorstores/supabase/
|
26 |
+
|
27 |
+
load_dotenv()
|
28 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
29 |
+
|
30 |
+
supabase_url = os.environ.get("SUPABASE_URL")
|
31 |
+
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
32 |
+
supabase: Client = create_client(supabase_url, supabase_key)
|
33 |
+
|
34 |
+
# wrap the metadata.jsonl's questions and answers into a list of document
|
35 |
+
|
36 |
+
docs = []
|
37 |
+
for sample in json_QA:
|
38 |
+
content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}"
|
39 |
+
doc = {
|
40 |
+
"content" : content,
|
41 |
+
"metadata" : { # meatadata็ๆ ผๅผๅฟ
้กปๆถsource้ฎ๏ผๅฆๅไผๆฅ้
|
42 |
+
"source" : sample['task_id']
|
43 |
+
},
|
44 |
+
"embedding" : embeddings.embed_query(content),
|
45 |
+
}
|
46 |
+
docs.append(doc)
|
47 |
+
|
48 |
+
table_name = os.environ.get('TABLE_NAME')
|
49 |
+
# upload the documents to the vector database
|
50 |
+
try:
|
51 |
+
response = (
|
52 |
+
supabase.table("documents")
|
53 |
+
.insert(docs)
|
54 |
+
.execute()
|
55 |
+
)
|
56 |
+
except Exception as exception:
|
57 |
+
print("Error inserting data into Supabase:", exception)
|
steps.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#give yourself more patiences
|
2 |
+
|
3 |
+
1. explore metadata, check each keys
|
4 |
+
|
5 |
+
2. define retriever
|
6 |
+
supabase?
|
7 |
+
relational database?, embeddings, content, id, ...
|
8 |
+
create a project, and a table + columns first emm...
|
9 |
+
https://supabase.com/dashboard/project/ohzwldyjckkuzbybaixs/editor/17248
|
10 |
+
enable vector in extensions under database
|
11 |
+
|
12 |
+
create table public.documents (
|
13 |
+
id bigint generated by default as identity primary key,
|
14 |
+
content text,
|
15 |
+
metadata json,
|
16 |
+
embedding vector(768),
|
17 |
+
similarity float
|
18 |
+
);
|
19 |
+
|
20 |
+
create index for embedding!!!
|
21 |
+
|
22 |
+
add functions, advanced settings, sql language
|
23 |
+
|
24 |
+
create index on documents using hnsw (embedding vector_ip_ops);
|
25 |
+
alter table documents enable row level security;
|
26 |
+
create function match_documents_langchain (
|
27 |
+
query_embedding vector (768)
|
28 |
+
)
|
29 |
+
returns setof documents
|
30 |
+
language plpgsql
|
31 |
+
as $$
|
32 |
+
begin
|
33 |
+
return query
|
34 |
+
select *
|
35 |
+
from documents
|
36 |
+
order by documents.embedding <#> query_embedding
|
37 |
+
limit 1;
|
38 |
+
end;
|
39 |
+
$$;
|
40 |
+
|
41 |
+
3. define agent
|
42 |
+
|
43 |
+
4. define gradio
|
system_prompt.txt
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
4 |
+
If the tool is not available, you can try to find the information online. You can also use your own knowledge to answer the question.
|
5 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
6 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|
7 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
8 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
9 |
+
|
10 |
+
==========================
|
11 |
+
Here is a few examples showing you how to answer the question step by step.
|
12 |
+
|
13 |
+
|
14 |
+
Question 1: Compute the check digit the Tropicos ID for the Order Helotiales would have if it were an ISBN-10 number.
|
15 |
+
Steps:
|
16 |
+
1. Search "Tropicos ID Order Helotiales"
|
17 |
+
2. Find the correct ID on the first result
|
18 |
+
3. Search "isbn 10 check digit calculator" or calculate check digit by hand
|
19 |
+
Tools:
|
20 |
+
1. web browser
|
21 |
+
2. search engine
|
22 |
+
3. calculator
|
23 |
+
Final Answer: 3
|
24 |
+
|
25 |
+
Question 2: What's the last line of the rhyme under the flavor name on the headstone visible in the background of the photo of the oldest flavor's headstone in the Ben & Jerry's online flavor graveyard as of the end of 2022?
|
26 |
+
Steps:
|
27 |
+
1. Searched "ben and jerrys flavor graveyard" on Google search.
|
28 |
+
2. Opened "Flavor Graveyard" on www.benjerry.com.
|
29 |
+
3. Opened each flavor to find the oldest one (Dastardly Mash).
|
30 |
+
4. Deciphered the blurry name on the headstone behind it (Miz Jelena's Sweet Potato Pie).
|
31 |
+
5. Scrolled down to Miz Jelena's Sweet Potato Pie.
|
32 |
+
6. Copied the last line of the rhyme.
|
33 |
+
7. (Optional) Copied the URL.
|
34 |
+
8. Searched "internet archive" on Google search.
|
35 |
+
9. Opened the Wayback Machine.
|
36 |
+
10. Entered the URL.
|
37 |
+
11. Loaded the last 2022 page.
|
38 |
+
12. Confirmed the information was the same.
|
39 |
+
Tools:
|
40 |
+
1. Image recognition tools
|
41 |
+
2. Web browser
|
42 |
+
3. Search engine
|
43 |
+
Final Answer: So we had to let it die.
|
44 |
+
|
45 |
+
==========================
|
46 |
+
Now, please answer the following question step by step.
|
็ๆ็นๅฎๅพ็.png
ADDED
![]() |
Git LFS Details
|