CaxtonEmeraldS commited on
Commit
1689721
·
verified ·
1 Parent(s): 0d9a0ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -24
app.py CHANGED
@@ -84,10 +84,31 @@ def update_neurons(activation, seed):
84
 
85
  # Gradio Interface
86
  with gr.Blocks() as demo:
87
- # gr.Markdown("# Cholestrol Concentration Prediction- ANN and Linear Model")
88
  gr.Markdown("# **Cholestrol Concentration Prediction Models (CCPM) - Linear and ANN Models**")
89
  gr.Markdown("**Licence: Creative Commons Attribution Non Commercial Share Alike 4.0 cc-by-nc-sa-4.0**")
90
  gr.Markdown("Dynamically select models and predict cholesterol concentration. For more information on dataset preparation and the associated experiment, kindly refer to and cite the journal article.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  gr.Markdown("This study presents Artificial Neural Networks (ANNs) and Linear Regression models for predicting cholesterol concentration from RGB colourimetric measurements. Around 2,500 single hidden layered ANN models, with varying activation functions, seed initialisations, and neuron counts were trained to approximate the non-linear relationship between colour channels and concentration levels. The trained models follow a 3-×-1 architecture with three input features (mean R, mean G, mean B), a single hidden layer of varying neurons, and one output neuron. A simple linear regression model was developed alongside as a baseline for comparison. The interface allows users to dynamically select the ANN model configuration and compare its predictions against the linear model. It also supports model selection, and performance evaluation for colour-based biosensing applications.")
93
 
@@ -111,29 +132,6 @@ Research Scholar, Department of Computer Science, School of Engineering and Tech
111
  Professor, Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014
112
  [Web Page](http://www.pondiuni.edu.in/profile/dr-s-kannan)
113
  """)
114
- # gr.Markdown("Dynamically select models and predict cholesterol concentration.")
115
-
116
- with gr.Row():
117
- r = gr.Number(label="Mean R (0 -255)")
118
- g = gr.Number(label="Mean G (0 -255)")
119
- b = gr.Number(label="Mean B (0 -255)")
120
-
121
- with gr.Row():
122
- activation = gr.Dropdown(choices=activations, label="Activation Function", interactive=True)
123
- seed = gr.Dropdown(choices=seeds, label="Seed", interactive=True)
124
- neurons = gr.Dropdown(choices=neuron_list, label="Neurons", interactive=True)
125
-
126
- activation.change(update_seeds, inputs=[activation], outputs=[seed])
127
- seed.change(update_neurons, inputs=[activation, seed], outputs=[neurons])
128
-
129
- with gr.Row():
130
- btn = gr.Button("Predict")
131
-
132
- with gr.Row():
133
- ann_output = gr.Text(label="Cholestrol Conentration (mM) - ANN Model Prediction ")
134
- lin_rgb_output = gr.Text(label="Cholestrol Conentration (mM) - Linear Model Prediction")
135
-
136
- gr.Markdown("* Predicted negative concentration adjusted to zero.")
137
 
138
  btn.click(
139
  fn=predict,
 
84
 
85
  # Gradio Interface
86
  with gr.Blocks() as demo:
 
87
  gr.Markdown("# **Cholestrol Concentration Prediction Models (CCPM) - Linear and ANN Models**")
88
  gr.Markdown("**Licence: Creative Commons Attribution Non Commercial Share Alike 4.0 cc-by-nc-sa-4.0**")
89
  gr.Markdown("Dynamically select models and predict cholesterol concentration. For more information on dataset preparation and the associated experiment, kindly refer to and cite the journal article.")
90
+
91
+ with gr.Row():
92
+ r = gr.Number(label="Mean R (0 -255)")
93
+ g = gr.Number(label="Mean G (0 -255)")
94
+ b = gr.Number(label="Mean B (0 -255)")
95
+
96
+ with gr.Row():
97
+ activation = gr.Dropdown(choices=activations, label="Activation Function", interactive=True)
98
+ seed = gr.Dropdown(choices=seeds, label="Seed", interactive=True)
99
+ neurons = gr.Dropdown(choices=neuron_list, label="Neurons", interactive=True)
100
+
101
+ activation.change(update_seeds, inputs=[activation], outputs=[seed])
102
+ seed.change(update_neurons, inputs=[activation, seed], outputs=[neurons])
103
+
104
+ with gr.Row():
105
+ btn = gr.Button("Predict")
106
+
107
+ with gr.Row():
108
+ ann_output = gr.Text(label="Cholestrol Conentration (mM) - ANN Model Prediction ")
109
+ lin_rgb_output = gr.Text(label="Cholestrol Conentration (mM) - Linear Model Prediction")
110
+
111
+ gr.Markdown("* Predicted negative concentration adjusted to zero.")
112
 
113
  gr.Markdown("This study presents Artificial Neural Networks (ANNs) and Linear Regression models for predicting cholesterol concentration from RGB colourimetric measurements. Around 2,500 single hidden layered ANN models, with varying activation functions, seed initialisations, and neuron counts were trained to approximate the non-linear relationship between colour channels and concentration levels. The trained models follow a 3-×-1 architecture with three input features (mean R, mean G, mean B), a single hidden layer of varying neurons, and one output neuron. A simple linear regression model was developed alongside as a baseline for comparison. The interface allows users to dynamically select the ANN model configuration and compare its predictions against the linear model. It also supports model selection, and performance evaluation for colour-based biosensing applications.")
114
 
 
132
  Professor, Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014
133
  [Web Page](http://www.pondiuni.edu.in/profile/dr-s-kannan)
134
  """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
  btn.click(
137
  fn=predict,