File size: 5,145 Bytes
db6921e
 
 
 
 
 
ee34000
db6921e
ee34000
db6921e
994a3de
ee34000
db6921e
ee34000
 
db6921e
 
 
ee34000
c02b756
994a3de
c02b756
ee34000
c02b756
 
ee34000
c02b756
 
ee34000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
994a3de
db6921e
 
202c514
247a174
 
 
202c514
db6921e
ee34000
994a3de
ee34000
db6921e
ee34000
994a3de
db6921e
 
 
 
 
 
202c514
 
ee34000
db6921e
994a3de
ee34000
994a3de
ee34000
994a3de
ee34000
 
 
994a3de
ee34000
 
 
84e915c
 
ee34000
 
84e915c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee34000
84e915c
 
 
ee34000
 
994a3de
e25c8d8
 
ee34000
 
 
 
 
 
 
 
202c514
 
ee34000
 
 
 
9867bc2
ee34000
db6921e
 
ee34000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import tensorflow as tf
import joblib
import numpy as np
import zipfile
import os
import re

# Step 1: Unzip models only once
unzip_dir = "unzipped_models"
zip_file = "Models.zip"  # Ensure this matches exactly the file name uploaded in your Space repo

if not os.path.exists(unzip_dir):
    print("Extracting model zip file...")
    with zipfile.ZipFile(zip_file, 'r') as zip_ref:
        zip_ref.extractall(unzip_dir)
    print("Extraction complete.")

# Step 2: Parse folders to dynamically populate dropdowns

model_root = os.path.join(unzip_dir, 'Models')  # Adjust if ZIP structure is different

activations = []
seeds_dict = dict()
neurons_dict = dict()

for act in os.listdir(model_root):
    act_path = os.path.join(model_root, act)
    if os.path.isdir(act_path) and not act.startswith("linear_models"):
        activations.append(act)
        seeds = []
        for seed_folder in os.listdir(act_path):
            seed_path = os.path.join(act_path, seed_folder)
            if os.path.isdir(seed_path):
                seeds.append(seed_folder)
                neuron_list = []
                for model_file in os.listdir(seed_path):
                    match = re.match(r"model_(\d+)\.keras", model_file)
                    if match:
                        neuron_list.append(int(match.group(1)))
                neurons_dict[(act, seed_folder)] = sorted(neuron_list)
        seeds_dict[act] = sorted(seeds)

activations = sorted(activations)

# Step 3: Prediction function
def predict(r, g, b, activation, seed, neurons):
    try:
        # Normalise R G B 
        r = r/256
        g = g/256
        b = b/256
        
        X = np.array([[r, g, b]])
        
        # Linear prediction (you can replace this with your actual linear model)
        lin_pred_rgb = (1.9221 * r) - (1.3817 * g) + (1.4058 * b) - 0.1318

        # ANN prediction
        keras_path = os.path.join(model_root, activation, seed, f"model_{neurons}.keras")
        if not os.path.exists(keras_path):
            raise FileNotFoundError(f"Model not found: {keras_path}")
        
        model = tf.keras.models.load_model(keras_path)
        ann_pred = model.predict(X)[0][0]

        # Rescale cholestrol concentration prediction in mM
        return ann_pred*50, lin_pred_rgb*50

    except Exception as e:
        return f"Error: {str(e)}", ""

# Step 4: Dynamic UI update functions (Gradio 4.x compliant)
def update_seeds(activation):
    return gr.update(choices=seeds_dict[activation], value=seeds_dict[activation][0])

def update_neurons(activation, seed):
    neurons = neurons_dict[(activation, seed)]
    return gr.update(choices=neurons, value=neurons[0])

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Cholestrol Concentration Prediction - ANN and Linear Model")
    gr.Markdown("# **Cholestrol Concentration Prediction - ANN and Linear Model**")
    gr.Markdown("Dynamically select models and predict cholesterol concentration.")
    
    gr.Markdown("### **Authors:**")
    gr.Markdown("""
**Poornima G**  
Research Scholar, Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014  
[Google Scholar](https://scholar.google.com/citations?user=N2uAkJEAAAAJ&hl=en) | [ORCiD](https://orcid.org/0000-0002-7398-5651)

**Nihad Alungal**  
Research Scholar, Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014  
[Google Scholar](https://scholar.google.com/citations?hl=en&user=Qi-xkEYAAAAJ) | [ORCiD](https://orcid.org/0009-0000-4561-1874)

**Caxton Emerald S**  
Research Scholar, Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry - 605 014  
[Google Scholar](https://scholar.google.com/citations?user=OgCHQv4AAAAJ&hl=en) | [ORCiD](https://orcid.org/0000-0002-7763-3987)

**Dr. S. Kannan**  
Professor, Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014  
[Web Page](http://www.pondiuni.edu.in/profile/dr-s-kannan)
    """)
    # gr.Markdown("Dynamically select models and predict cholesterol concentration.")
    
    with gr.Row():
        r = gr.Number(label="Mean R (0 -255)")
        g = gr.Number(label="Mean G (0 -255)")
        b = gr.Number(label="Mean B (0 -255)")

    with gr.Row():
        activation = gr.Dropdown(choices=activations, label="Activation Function", interactive=True)
        seed = gr.Dropdown(choices=seeds, label="Seed", interactive=True)
        neurons = gr.Dropdown(choices=neuron_list, label="Neurons", interactive=True)

    activation.change(update_seeds, inputs=[activation], outputs=[seed])
    seed.change(update_neurons, inputs=[activation, seed], outputs=[neurons])

    with gr.Row():
        btn = gr.Button("Predict")
    
    with gr.Row():
        ann_output = gr.Text(label="Cholestrol Conentration (mM) - ANN Model Prediction ")
        lin_rgb_output = gr.Text(label="Cholestrol Conentration (mM) - Linear Model Prediction")

    btn.click(
        fn=predict, 
        inputs=[r, g, b, activation, seed, neurons],
        outputs=[ann_output, lin_rgb_output]
    )

if __name__ == "__main__":
    demo.launch()