|
import matplotlib.pyplot as plt |
|
import mmcv |
|
import numpy as np |
|
import pycocotools.mask as mask_util |
|
from matplotlib.collections import PatchCollection |
|
from matplotlib.patches import Polygon |
|
import cv2 |
|
|
|
from ..utils import mask2ndarray |
|
|
|
EPS = 1e-2 |
|
|
|
|
|
def color_val_matplotlib(color): |
|
"""Convert various input in BGR order to normalized RGB matplotlib color |
|
tuples, |
|
|
|
Args: |
|
color (:obj:`Color`/str/tuple/int/ndarray): Color inputs |
|
|
|
Returns: |
|
tuple[float]: A tuple of 3 normalized floats indicating RGB channels. |
|
""" |
|
color = mmcv.color_val(color) |
|
color = [color / 255 for color in color[::-1]] |
|
return tuple(color) |
|
|
|
|
|
def imshow_det_bboxes(img, |
|
bboxes, |
|
labels, |
|
segms=None, |
|
class_names=None, |
|
score_thr=0, |
|
bbox_color='green', |
|
text_color='green', |
|
mask_color=None, |
|
thickness=2, |
|
font_size=13, |
|
win_name='', |
|
show=True, |
|
wait_time=0, |
|
out_file=None): |
|
"""Draw bboxes and class labels (with scores) on an image. |
|
|
|
Args: |
|
img (str or ndarray): The image to be displayed. |
|
bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or |
|
(n, 5). |
|
labels (ndarray): Labels of bboxes. |
|
segms (ndarray or None): Masks, shaped (n,h,w) or None |
|
class_names (list[str]): Names of each classes. |
|
score_thr (float): Minimum score of bboxes to be shown. Default: 0 |
|
bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. |
|
The tuple of color should be in BGR order. Default: 'green' |
|
text_color (str or tuple(int) or :obj:`Color`):Color of texts. |
|
The tuple of color should be in BGR order. Default: 'green' |
|
mask_color (str or tuple(int) or :obj:`Color`, optional): |
|
Color of masks. The tuple of color should be in BGR order. |
|
Default: None |
|
thickness (int): Thickness of lines. Default: 2 |
|
font_size (int): Font size of texts. Default: 13 |
|
show (bool): Whether to show the image. Default: True |
|
win_name (str): The window name. Default: '' |
|
wait_time (float): Value of waitKey param. Default: 0. |
|
out_file (str, optional): The filename to write the image. |
|
Default: None |
|
|
|
Returns: |
|
ndarray: The image with bboxes drawn on it. |
|
""" |
|
assert bboxes.ndim == 2, \ |
|
f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.' |
|
assert labels.ndim == 1, \ |
|
f' labels ndim should be 1, but its ndim is {labels.ndim}.' |
|
assert bboxes.shape[0] == labels.shape[0], \ |
|
'bboxes.shape[0] and labels.shape[0] should have the same length.' |
|
assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \ |
|
f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.' |
|
img = mmcv.imread(img).astype(np.uint8) |
|
|
|
if score_thr > 0: |
|
assert bboxes.shape[1] == 5 |
|
scores = bboxes[:, -1] |
|
inds = scores > score_thr |
|
bboxes = bboxes[inds, :] |
|
labels = labels[inds] |
|
if segms is not None: |
|
if len(inds) != len(segms): |
|
inds = np.repeat(a = inds, repeats = 2) |
|
segms = segms[inds, ...] |
|
|
|
mask_colors = [] |
|
if labels.shape[0] > 0: |
|
if mask_color is None: |
|
|
|
np.random.seed(46) |
|
mask_colors = [ |
|
np.random.randint(0, 256, (1, 3), dtype=np.uint8) |
|
|
|
for _ in range(100) |
|
] |
|
|
|
|
|
else: |
|
|
|
mask_colors = [ |
|
np.array(mmcv.color_val(mask_color)[::-1], dtype=np.uint8) |
|
] * ( |
|
max(labels) + 1) |
|
|
|
bbox_color = color_val_matplotlib(bbox_color) |
|
text_color = color_val_matplotlib(text_color) |
|
|
|
img = mmcv.bgr2rgb(img) |
|
width, height = img.shape[1], img.shape[0] |
|
img = np.ascontiguousarray(img) |
|
|
|
fig = plt.figure(win_name, frameon=False) |
|
plt.title(win_name) |
|
canvas = fig.canvas |
|
dpi = fig.get_dpi() |
|
|
|
|
|
fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi) |
|
|
|
|
|
plt.subplots_adjust(left=0, right=1, bottom=0, top=1) |
|
ax = plt.gca() |
|
ax.axis('off') |
|
|
|
polygons = [] |
|
color = [] |
|
img_bound =img*0 |
|
|
|
for i, (bbox, label) in enumerate(zip(bboxes, labels)): |
|
bbox_int = bbox.astype(np.int32) |
|
poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]], |
|
[bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]] |
|
np_poly = np.array(poly).reshape((4, 2)) |
|
polygons.append(Polygon(np_poly)) |
|
color.append(bbox_color) |
|
label_text = class_names[ |
|
label] if class_names is not None else f'class {label}' |
|
if len(bbox) > 4: |
|
label_text += f'|{bbox[-1]:.02f}' |
|
''' |
|
ax.text( |
|
bbox_int[0], |
|
bbox_int[1], |
|
f'{label_text}', |
|
bbox={ |
|
'facecolor': 'black', |
|
'alpha': 0.8, |
|
'pad': 0.7, |
|
'edgecolor': 'none' |
|
}, |
|
color=text_color, |
|
fontsize=font_size, |
|
verticalalignment='top', |
|
horizontalalignment='left') |
|
''' |
|
if segms is not None: |
|
for ll in range(1): |
|
color_mask = mask_colors[np.random.randint(0, 99)] |
|
mask = segms[len(labels)*ll+i].astype(bool) |
|
show_border = True |
|
img[mask] = img[mask] * 0.5 + color_mask * 0.5 |
|
if show_border: |
|
contours,_ = cv2.findContours(mask.copy().astype('uint8'), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) |
|
border_thick = min(int(4*(max(bbox_int[2]-bbox_int[0],bbox_int[3]-bbox_int[1])/300))+1,6) |
|
cv2.drawContours(img, contours, -1, (int(color_mask[0][0]),int(color_mask[0][1]),int(color_mask[0][2])), border_thick) |
|
|
|
|
|
|
|
|
|
plt.imshow(img) |
|
|
|
p = PatchCollection( |
|
polygons, facecolor='none', edgecolors=color, linewidths=thickness) |
|
|
|
|
|
stream, _ = canvas.print_to_buffer() |
|
buffer = np.frombuffer(stream, dtype='uint8') |
|
img_rgba = buffer.reshape(height, width, 4) |
|
rgb, alpha = np.split(img_rgba, [3], axis=2) |
|
img = rgb.astype('uint8') |
|
img = mmcv.rgb2bgr(img) |
|
|
|
if show: |
|
|
|
|
|
|
|
|
|
if wait_time == 0: |
|
plt.show() |
|
else: |
|
plt.show(block=False) |
|
plt.pause(wait_time) |
|
if out_file is not None: |
|
mmcv.imwrite(img, out_file) |
|
|
|
plt.close() |
|
|
|
return img |
|
|
|
|
|
def imshow_gt_det_bboxes(img, |
|
annotation, |
|
result, |
|
class_names=None, |
|
score_thr=0, |
|
gt_bbox_color=(255, 102, 61), |
|
gt_text_color=(255, 102, 61), |
|
gt_mask_color=(255, 102, 61), |
|
det_bbox_color=(72, 101, 241), |
|
det_text_color=(72, 101, 241), |
|
det_mask_color=(72, 101, 241), |
|
thickness=2, |
|
font_size=13, |
|
win_name='', |
|
show=True, |
|
wait_time=0, |
|
out_file=None): |
|
"""General visualization GT and result function. |
|
|
|
Args: |
|
img (str or ndarray): The image to be displayed.) |
|
annotation (dict): Ground truth annotations where contain keys of |
|
'gt_bboxes' and 'gt_labels' or 'gt_masks' |
|
result (tuple[list] or list): The detection result, can be either |
|
(bbox, segm) or just bbox. |
|
class_names (list[str]): Names of each classes. |
|
score_thr (float): Minimum score of bboxes to be shown. Default: 0 |
|
gt_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. |
|
The tuple of color should be in BGR order. Default: (255, 102, 61) |
|
gt_text_color (str or tuple(int) or :obj:`Color`):Color of texts. |
|
The tuple of color should be in BGR order. Default: (255, 102, 61) |
|
gt_mask_color (str or tuple(int) or :obj:`Color`, optional): |
|
Color of masks. The tuple of color should be in BGR order. |
|
Default: (255, 102, 61) |
|
det_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines. |
|
The tuple of color should be in BGR order. Default: (72, 101, 241) |
|
det_text_color (str or tuple(int) or :obj:`Color`):Color of texts. |
|
The tuple of color should be in BGR order. Default: (72, 101, 241) |
|
det_mask_color (str or tuple(int) or :obj:`Color`, optional): |
|
Color of masks. The tuple of color should be in BGR order. |
|
Default: (72, 101, 241) |
|
thickness (int): Thickness of lines. Default: 2 |
|
font_size (int): Font size of texts. Default: 13 |
|
win_name (str): The window name. Default: '' |
|
show (bool): Whether to show the image. Default: True |
|
wait_time (float): Value of waitKey param. Default: 0. |
|
out_file (str, optional): The filename to write the image. |
|
Default: None |
|
|
|
Returns: |
|
ndarray: The image with bboxes or masks drawn on it. |
|
""" |
|
assert 'gt_bboxes' in annotation |
|
assert 'gt_labels' in annotation |
|
assert isinstance( |
|
result, |
|
(tuple, list)), f'Expected tuple or list, but get {type(result)}' |
|
|
|
gt_masks = annotation.get('gt_masks', None) |
|
if gt_masks is not None: |
|
gt_masks = mask2ndarray(gt_masks) |
|
|
|
img = mmcv.imread(img) |
|
|
|
img = imshow_det_bboxes( |
|
img, |
|
annotation['gt_bboxes'], |
|
annotation['gt_labels'], |
|
gt_masks, |
|
class_names=class_names, |
|
bbox_color=gt_bbox_color, |
|
text_color=gt_text_color, |
|
mask_color=gt_mask_color, |
|
thickness=thickness, |
|
font_size=font_size, |
|
win_name=win_name, |
|
show=False) |
|
|
|
if isinstance(result, tuple): |
|
bbox_result, segm_result = result |
|
if isinstance(segm_result, tuple): |
|
segm_result = segm_result[0] |
|
else: |
|
bbox_result, segm_result = result, None |
|
|
|
bboxes = np.vstack(bbox_result) |
|
labels = [ |
|
np.full(bbox.shape[0], i, dtype=np.int32) |
|
for i, bbox in enumerate(bbox_result) |
|
] |
|
labels = np.concatenate(labels) |
|
|
|
segms = None |
|
if segm_result is not None and len(labels) > 0: |
|
segms = mmcv.concat_list(segm_result) |
|
segms = mask_util.decode(segms) |
|
segms = segms.transpose(2, 0, 1) |
|
|
|
img = imshow_det_bboxes( |
|
img, |
|
bboxes, |
|
labels, |
|
segms=segms, |
|
class_names=class_names, |
|
score_thr=score_thr, |
|
bbox_color=det_bbox_color, |
|
text_color=det_text_color, |
|
mask_color=det_mask_color, |
|
thickness=thickness, |
|
font_size=font_size, |
|
win_name=win_name, |
|
show=show, |
|
wait_time=wait_time, |
|
out_file=out_file) |
|
return img |
|
|