# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. import torch from rotary_embedding_torch import RotaryEmbedding from torch import nn from torch.distributed.fsdp._common_utils import _is_fsdp_flattened __all__ = ["meta_non_persistent_buffer_init_fn"] def meta_non_persistent_buffer_init_fn(module: nn.Module) -> nn.Module: """ Used for materializing `non-persistent tensor buffers` while model resuming. Since non-persistent tensor buffers are not saved in state_dict, when initializing model with meta device, user should materialize those buffers manually. Currently, only `rope.dummy` is this special case. """ with torch.no_grad(): for submodule in module.modules(): if not isinstance(submodule, RotaryEmbedding): continue for buffer_name, buffer in submodule.named_buffers(recurse=False): if buffer.is_meta and "dummy" in buffer_name: materialized_buffer = torch.zeros_like(buffer, device="cpu") setattr(submodule, buffer_name, materialized_buffer) assert not any(b.is_meta for n, b in module.named_buffers()) return module