Spaces:
Running
on
Zero
Running
on
Zero
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# // | |
# // Licensed under the Apache License, Version 2.0 (the "License"); | |
# // you may not use this file except in compliance with the License. | |
# // You may obtain a copy of the License at | |
# // | |
# // http://www.apache.org/licenses/LICENSE-2.0 | |
# // | |
# // Unless required by applicable law or agreed to in writing, software | |
# // distributed under the License is distributed on an "AS IS" BASIS, | |
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# // See the License for the specific language governing permissions and | |
# // limitations under the License. | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
def get_mlp(mlp_type: Optional[str] = "normal"): | |
if mlp_type == "normal": | |
return MLP | |
elif mlp_type == "swiglu": | |
return SwiGLUMLP | |
class MLP(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
expand_ratio: int, | |
): | |
super().__init__() | |
self.proj_in = nn.Linear(dim, dim * expand_ratio) | |
self.act = nn.GELU("tanh") | |
self.proj_out = nn.Linear(dim * expand_ratio, dim) | |
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
x = self.proj_in(x) | |
x = self.act(x) | |
x = self.proj_out(x) | |
return x | |
class SwiGLUMLP(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
expand_ratio: int, | |
multiple_of: int = 256, | |
): | |
super().__init__() | |
hidden_dim = int(2 * dim * expand_ratio / 3) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.proj_in_gate = nn.Linear(dim, hidden_dim, bias=False) | |
self.proj_out = nn.Linear(hidden_dim, dim, bias=False) | |
self.proj_in = nn.Linear(dim, hidden_dim, bias=False) | |
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
x = self.proj_out(F.silu(self.proj_in_gate(x)) * self.proj_in(x)) | |
return x | |