Spaces:
Running
on
Zero
Running
on
Zero
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# // | |
# // Licensed under the Apache License, Version 2.0 (the "License"); | |
# // you may not use this file except in compliance with the License. | |
# // You may obtain a copy of the License at | |
# // | |
# // http://www.apache.org/licenses/LICENSE-2.0 | |
# // | |
# // Unless required by applicable law or agreed to in writing, software | |
# // distributed under the License is distributed on an "AS IS" BASIS, | |
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# // See the License for the specific language governing permissions and | |
# // limitations under the License. | |
import torch | |
import torch.nn.functional as F | |
from flash_attn import flash_attn_varlen_func | |
from torch import nn | |
class TorchAttention(nn.Module): | |
def tflops(self, args, kwargs, output) -> float: | |
assert len(args) == 0 or len(args) > 2, "query, key should both provided by args / kwargs" | |
q = kwargs.get("query") or args[0] | |
k = kwargs.get("key") or args[1] | |
b, h, sq, d = q.shape | |
b, h, sk, d = k.shape | |
return b * h * (4 * d * (sq / 1e6) * (sk / 1e6)) | |
def forward(self, *args, **kwargs): | |
return F.scaled_dot_product_attention(*args, **kwargs) | |
class FlashAttentionVarlen(nn.Module): | |
def tflops(self, args, kwargs, output) -> float: | |
cu_seqlens_q = kwargs["cu_seqlens_q"] | |
cu_seqlens_k = kwargs["cu_seqlens_k"] | |
_, h, d = output.shape | |
seqlens_q = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]) / 1e6 | |
seqlens_k = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]) / 1e6 | |
return h * (4 * d * (seqlens_q * seqlens_k).sum()) | |
def forward(self, *args, **kwargs): | |
kwargs["deterministic"] = torch.are_deterministic_algorithms_enabled() | |
return flash_attn_varlen_func(*args, **kwargs) | |