SeedVR2-3B / app.py
Iceclear's picture
Update app.py
09fd3d7 verified
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import spaces
import subprocess
import os
import torch
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
print(os.getcwd())
import datetime
from tqdm import tqdm
import gc
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
if os.path.exists("./projects/video_diffusion_sr/color_fix.py"):
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
use_colorfix=True
else:
use_colorfix = False
print('Note!!!!!! Color fix is not avaliable!')
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
import argparse
from common.distributed import (
get_device,
init_torch,
)
from common.distributed.advanced import (
get_data_parallel_rank,
get_data_parallel_world_size,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
init_sequence_parallel,
)
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.distributed.ops import sync_data
from common.seed import set_seed
from common.partition import partition_by_groups, partition_by_size
import gradio as gr
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file, get_dir
import shlex
import uuid
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
"""Load file form http url, will download models if necessary.
Reference: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
Args:
url (str): URL to be downloaded.
model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
Default: None.
progress (bool): Whether to show the download progress. Default: True.
file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.
Returns:
str: The path to the downloaded file.
"""
if model_dir is None: # use the pytorch hub_dir
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, 'checkpoints')
os.makedirs(model_dir, exist_ok=True)
parts = urlparse(url)
filename = os.path.basename(parts.path)
if file_name is not None:
filename = file_name
cached_file = os.path.abspath(os.path.join(model_dir, filename))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
return cached_file
# os.system("pip freeze")
ckpt_dir = Path('./ckpts')
if not ckpt_dir.exists():
ckpt_dir.mkdir()
pretrain_model_url = {
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt',
'apex': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl'
}
# download weights
if not os.path.exists('./ckpts/seedvr2_ema_3b.pth'):
load_file_from_url(url=pretrain_model_url['dit'], model_dir='./ckpts/', progress=True, file_name=None)
if not os.path.exists('./ckpts/ema_vae.pth'):
load_file_from_url(url=pretrain_model_url['vae'], model_dir='./ckpts/', progress=True, file_name=None)
if not os.path.exists('./pos_emb.pt'):
load_file_from_url(url=pretrain_model_url['pos_emb'], model_dir='./', progress=True, file_name=None)
if not os.path.exists('./neg_emb.pt'):
load_file_from_url(url=pretrain_model_url['neg_emb'], model_dir='./', progress=True, file_name=None)
if not os.path.exists('./apex-0.1-cp310-cp310-linux_x86_64.whl'):
load_file_from_url(url=pretrain_model_url['apex'], model_dir='./', progress=True, file_name=None)
subprocess.run(shlex.split("pip install apex-0.1-cp310-cp310-linux_x86_64.whl"))
print(f"✅ setup completed Apex")
# download images
torch.hub.download_url_to_file(
'https://huggingface.co/datasets/Iceclear/SeedVR_VideoDemos/resolve/main/seedvr_videos_crf23/aigc1k/23_1_lq.mp4',
'01.mp4')
torch.hub.download_url_to_file(
'https://huggingface.co/datasets/Iceclear/SeedVR_VideoDemos/resolve/main/seedvr_videos_crf23/aigc1k/28_1_lq.mp4',
'02.mp4')
torch.hub.download_url_to_file(
'https://huggingface.co/datasets/Iceclear/SeedVR_VideoDemos/resolve/main/seedvr_videos_crf23/aigc1k/2_1_lq.mp4',
'03.mp4')
def configure_sequence_parallel(sp_size):
if sp_size > 1:
init_sequence_parallel(sp_size)
@spaces.GPU(duration=100)
def configure_runner(sp_size):
config_path = os.path.join('./configs_3b', 'main.yaml')
config = load_config(config_path)
runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(runner.config, False)
init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
configure_sequence_parallel(sp_size)
runner.configure_dit_model(device="cuda", checkpoint='./ckpts/seedvr2_ema_3b.pth')
runner.configure_vae_model()
# Set memory limit.
if hasattr(runner.vae, "set_memory_limit"):
runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
return runner
@spaces.GPU(duration=100)
def generation_step(runner, text_embeds_dict, cond_latents):
def _move_to_cuda(x):
return [i.to(torch.device("cuda")) for i in x]
noises = [torch.randn_like(latent) for latent in cond_latents]
aug_noises = [torch.randn_like(latent) for latent in cond_latents]
print(f"Generating with noise shape: {noises[0].size()}.")
noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
noises, aug_noises, cond_latents = list(
map(lambda x: _move_to_cuda(x), (noises, aug_noises, cond_latents))
)
cond_noise_scale = 0.1
def _add_noise(x, aug_noise):
t = (
torch.tensor([1000.0], device=torch.device("cuda"))
* cond_noise_scale
)
shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None]
t = runner.timestep_transform(t, shape)
print(
f"Timestep shifting from"
f" {1000.0 * cond_noise_scale} to {t}."
)
x = runner.schedule.forward(x, aug_noise, t)
return x
conditions = [
runner.get_condition(
noise,
task="sr",
latent_blur=_add_noise(latent_blur, aug_noise),
)
for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents)
]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = runner.inference(
noises=noises,
conditions=conditions,
dit_offload=False,
**text_embeds_dict,
)
samples = [
(
rearrange(video[:, None], "c t h w -> t c h w")
if video.ndim == 3
else rearrange(video, "c t h w -> t c h w")
)
for video in video_tensors
]
del video_tensors
return samples
@spaces.GPU(duration=100)
def generation_loop(video_path='./test_videos', seed=666, fps_out=12, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=1280, res_w=720, sp_size=1):
runner = configure_runner(1)
output_dir = 'output/' + str(uuid.uuid4()) + '.mp4'
def _build_pos_and_neg_prompt():
# read positive prompt
positive_text = "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, \
hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, \
skin pore detailing, hyper sharpness, perfect without deformations."
# read negative prompt
negative_text = "painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, \
CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, \
signature, jpeg artifacts, deformed, lowres, over-smooth"
return positive_text, negative_text
def _build_test_prompts(video_path):
positive_text, negative_text = _build_pos_and_neg_prompt()
original_videos = []
prompts = {}
video_list = os.listdir(video_path)
for f in video_list:
# if f.endswith(".mp4"):
original_videos.append(f)
prompts[f] = positive_text
print(f"Total prompts to be generated: {len(original_videos)}")
return original_videos, prompts, negative_text
def _extract_text_embeds():
# Text encoder forward.
positive_prompts_embeds = []
for texts_pos in tqdm(original_videos_local):
text_pos_embeds = torch.load('pos_emb.pt')
text_neg_embeds = torch.load('neg_emb.pt')
positive_prompts_embeds.append(
{"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
)
gc.collect()
torch.cuda.empty_cache()
return positive_prompts_embeds
def cut_videos(videos, sp_size):
if videos.size(1) > 121:
videos = videos[:, :121]
t = videos.size(1)
if t <= 4 * sp_size:
print(f"Cut input video size: {videos.size()}")
padding = [videos[:, -1].unsqueeze(1)] * (4 * sp_size - t + 1)
padding = torch.cat(padding, dim=1)
videos = torch.cat([videos, padding], dim=1)
return videos
if (t - 1) % (4 * sp_size) == 0:
return videos
else:
padding = [videos[:, -1].unsqueeze(1)] * (
4 * sp_size - ((t - 1) % (4 * sp_size))
)
padding = torch.cat(padding, dim=1)
videos = torch.cat([videos, padding], dim=1)
assert (videos.size(1) - 1) % (4 * sp_size) == 0
return videos
# classifier-free guidance
runner.config.diffusion.cfg.scale = cfg_scale
runner.config.diffusion.cfg.rescale = cfg_rescale
# sampling steps
runner.config.diffusion.timesteps.sampling.steps = sample_steps
runner.configure_diffusion()
# set random seed
set_seed(seed, same_across_ranks=True)
os.makedirs('output/', exist_ok=True)
tgt_path = 'output/'
# get test prompts
original_videos = [video_path.split('/')[-1]]
# divide the prompts into different groups
original_videos_group = original_videos
# store prompt mapping
original_videos_local = original_videos_group
original_videos_local = partition_by_size(original_videos_local, batch_size)
# pre-extract the text embeddings
positive_prompts_embeds = _extract_text_embeds()
video_transform = Compose(
[
NaResize(
resolution=(
res_h * res_w
)
** 0.5,
mode="area",
# Upsample image, model only trained for high res.
downsample_only=False,
),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
]
)
# generation loop
for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)):
# read condition latents
cond_latents = []
for video in videos:
video = (
read_video(
os.path.join(video_path), output_format="TCHW"
)[0]
/ 255.0
)
print(f"Read video size: {video.size()}")
cond_latents.append(video_transform(video.to(torch.device("cuda"))))
ori_lengths = [video.size(1) for video in cond_latents]
input_videos = cond_latents
cond_latents = [cut_videos(video, sp_size) for video in cond_latents]
# runner.dit.to("cpu")
print(f"Encoding videos: {list(map(lambda x: x.size(), cond_latents))}")
# runner.vae.to(torch.device("cuda"))
cond_latents = runner.vae_encode(cond_latents)
# runner.vae.to("cpu")
# runner.dit.to(torch.device("cuda"))
for i, emb in enumerate(text_embeds["texts_pos"]):
text_embeds["texts_pos"][i] = emb.to(torch.device("cuda"))
for i, emb in enumerate(text_embeds["texts_neg"]):
text_embeds["texts_neg"][i] = emb.to(torch.device("cuda"))
samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
# runner.dit.to("cpu")
del cond_latents
# dump samples to the output directory
for path, input, sample, ori_length in zip(
videos, input_videos, samples, ori_lengths
):
if ori_length < sample.shape[0]:
sample = sample[:ori_length]
# color fix
input = (
rearrange(input[:, None], "c t h w -> t c h w")
if input.ndim == 3
else rearrange(input, "c t h w -> t c h w")
)
if use_colorfix:
sample = wavelet_reconstruction(
sample.to("cpu"), input[: sample.size(0)].to("cpu")
)
else:
sample = sample.to("cpu")
sample = (
rearrange(sample[:, None], "t c h w -> t h w c")
if sample.ndim == 3
else rearrange(sample, "t c h w -> t h w c")
)
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
sample = sample.to(torch.uint8).numpy()
mediapy.write_video(
output_dir, sample, fps=fps_out
)
# print(f"Generated video size: {sample.shape}")
gc.collect()
torch.cuda.empty_cache()
return output_dir, output_dir
with gr.Blocks(title="SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training") as demo:
# Top logo and title
gr.HTML("""
<div style='text-align:center; margin-bottom: 10px;'>
<img src='https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/assets/seedvr_logo.png' style='height:40px;' alt='SeedVR logo'/>
</div>
<p><b>Official Gradio demo</b> for
<a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>
<b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br>
🔥 <b>SeedVR2</b> is a one-step image and video restoration algorithm for real-world and AIGC content.
</p>
""")
# Interface
with gr.Row():
input_video = gr.Video(label="Upload a video")
seed = gr.Number(label="Seeds", value=666)
fps = gr.Number(label="fps", value=24)
with gr.Row():
output_video = gr.Video(label="Output")
download_link = gr.File(label="Download the output")
run_button = gr.Button("Run")
run_button.click(fn=generation_loop, inputs=[input_video, seed, fps], outputs=[output_video, download_link])
# Examples
gr.Examples(
examples=[
["./01.mp4", 4, 24],
["./02.mp4", 4, 24],
["./03.mp4", 4, 24],
],
inputs=[input_video, seed, fps]
)
# Article/Footer
gr.HTML("""
<hr>
<p>If you find SeedVR helpful, please ⭐ the
<a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repository</a>:</p>
<a href="https://github.com/ByteDance-Seed/SeedVR" target="_blank">
<img src="https://img.shields.io/github/stars/ByteDance-Seed/SeedVR?style=social" alt="GitHub Stars">
</a>
<h4>Notice</h4>
<p>This demo supports up to <b>720p</b> and <b>121 frames</b>.
For other use cases (image restoration, video resolutions beyond 720p, etc), check the <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repo</a>.</p>
<h4>Limitations</h4>
<p>May fail on heavy degradations or small-motion AIGC clips, causing oversharpening or poor restoration.</p>
<h4>Citation</h4>
<pre style="font-size: 12px;">
@article{wang2025seedvr2,
title={SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training},
author={Wang, Jianyi and Lin, Shanchuan and Lin, Zhijie and Ren, Yuxi and Wei, Meng and Yue, Zongsheng and Zhou, Shangchen and Chen, Hao and Zhao, Yang and Yang, Ceyuan and Xiao, Xuefeng and Loy, Chen Change and Jiang, Lu},
booktitle={arXiv preprint arXiv:2506.05301},
year={2025}
}
@inproceedings{wang2025seedvr,
title={SeedVR: Seeding Infinity in Diffusion Transformer Towards Generic Video Restoration},
author={Wang, Jianyi and Lin, Zhijie and Wei, Meng and Zhao, Yang and Yang, Ceyuan and Loy, Chen Change and Jiang, Lu},
booktitle={CVPR},
year={2025}
}
</pre>
<h4>License</h4>
<p>Licensed under the
<a href="http://www.apache.org/licenses/LICENSE-2.0" target="_blank">Apache 2.0 License</a>.</p>
<h4>Contact</h4>
<p>Email: <b>iceclearwjy@gmail.com</b></p>
<p>
<a href="https://twitter.com/Iceclearwjy">
<img src="https://img.shields.io/twitter/follow/Iceclearwjy?label=%40Iceclearwjy&style=social" alt="Twitter Follow">
</a>
<a href="https://github.com/IceClear">
<img src="https://img.shields.io/github/followers/IceClear?style=social" alt="GitHub Follow">
</a>
</p>
<p style="text-align:center;">
<img src="https://visitor-badge.laobi.icu/badge?page_id=ByteDance-Seed/SeedVR" alt="visitors">
</p>
""")
demo.queue()
demo.launch()