Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,188 Bytes
42f2c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import os
import torch
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
print(os.getcwd())
import datetime
from tqdm import tqdm
from models.dit import na
import gc
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
if os.path.exists("./projects/video_diffusion_sr/color_fix.py"):
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
use_colorfix=True
else:
use_colorfix = False
print('Note!!!!!! Color fix is not avaliable!')
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
import argparse
from common.distributed import (
get_device,
init_torch,
)
from common.distributed.advanced import (
get_data_parallel_rank,
get_data_parallel_world_size,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
init_sequence_parallel,
)
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.distributed.ops import sync_data
from common.seed import set_seed
from common.partition import partition_by_groups, partition_by_size
def configure_sequence_parallel(sp_size):
if sp_size > 1:
init_sequence_parallel(sp_size)
def configure_runner(sp_size):
config_path = os.path.join('./configs_7b', 'main.yaml')
config = load_config(config_path)
runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(runner.config, False)
init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
configure_sequence_parallel(sp_size)
runner.configure_dit_model(device="cuda", checkpoint='./ckpts/seedvr_ema_7b.pth')
runner.configure_vae_model()
# Set memory limit.
if hasattr(runner.vae, "set_memory_limit"):
runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
return runner
def generation_step(runner, text_embeds_dict, cond_latents):
def _move_to_cuda(x):
return [i.to(get_device()) for i in x]
noises = [torch.randn_like(latent) for latent in cond_latents]
aug_noises = [torch.randn_like(latent) for latent in cond_latents]
print(f"Generating with noise shape: {noises[0].size()}.")
noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
noises, aug_noises, cond_latents = list(
map(lambda x: _move_to_cuda(x), (noises, aug_noises, cond_latents))
)
cond_noise_scale = 0.1
def _add_noise(x, aug_noise):
t = (
torch.tensor([1000.0], device=get_device())
* cond_noise_scale
)
shape = torch.tensor(x.shape[1:], device=get_device())[None]
t = runner.timestep_transform(t, shape)
print(
f"Timestep shifting from"
f" {1000.0 * cond_noise_scale} to {t}."
)
x = runner.schedule.forward(x, aug_noise, t)
return x
conditions = [
runner.get_condition(
noise,
task="sr",
latent_blur=_add_noise(latent_blur, aug_noise),
)
for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents)
]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = runner.inference(
noises=noises,
conditions=conditions,
dit_offload=True,
**text_embeds_dict,
)
samples = [
(
rearrange(video[:, None], "c t h w -> t c h w")
if video.ndim == 3
else rearrange(video, "c t h w -> t c h w")
)
for video in video_tensors
]
del video_tensors
return samples
def generation_loop(runner, video_path='./test_videos', output_dir='./results', batch_size=1, cfg_scale=6.5, cfg_rescale=0.0, sample_steps=50, seed=666, res_h=1280, res_w=720, sp_size=1):
def _build_pos_and_neg_prompt():
# read positive prompt
positive_text = "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, \
hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, \
skin pore detailing, hyper sharpness, perfect without deformations."
# read negative prompt
negative_text = "painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, \
CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, \
signature, jpeg artifacts, deformed, lowres, over-smooth"
return positive_text, negative_text
def _build_test_prompts(video_path):
positive_text, negative_text = _build_pos_and_neg_prompt()
original_videos = []
prompts = {}
video_list = os.listdir(video_path)
for f in video_list:
if f.endswith(".mp4"):
original_videos.append(f)
prompts[f] = positive_text
print(f"Total prompts to be generated: {len(original_videos)}")
return original_videos, prompts, negative_text
def _extract_text_embeds():
# Text encoder forward.
positive_prompts_embeds = []
for texts_pos in tqdm(original_videos_local):
text_pos_embeds = torch.load('pos_emb.pt')
text_neg_embeds = torch.load('neg_emb.pt')
positive_prompts_embeds.append(
{"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
)
gc.collect()
torch.cuda.empty_cache()
return positive_prompts_embeds
def cut_videos(videos, sp_size):
t = videos.size(1)
if t <= 4 * sp_size:
print(f"Cut input video size: {videos.size()}")
padding = [videos[:, -1].unsqueeze(1)] * (4 * sp_size - t + 1)
padding = torch.cat(padding, dim=1)
videos = torch.cat([videos, padding], dim=1)
return videos
if (t - 1) % (4 * sp_size) == 0:
return videos
else:
padding = [videos[:, -1].unsqueeze(1)] * (
4 * sp_size - ((t - 1) % (4 * sp_size))
)
padding = torch.cat(padding, dim=1)
videos = torch.cat([videos, padding], dim=1)
assert (videos.size(1) - 1) % (4 * sp_size) == 0
return videos
# classifier-free guidance
runner.config.diffusion.cfg.scale = cfg_scale
runner.config.diffusion.cfg.rescale = cfg_rescale
# sampling steps
runner.config.diffusion.timesteps.sampling.steps = sample_steps
runner.configure_diffusion()
# set random seed
set_seed(seed, same_across_ranks=True)
os.makedirs(output_dir, exist_ok=True)
tgt_path = output_dir
# get test prompts
original_videos, _, _ = _build_test_prompts(video_path)
# divide the prompts into different groups
original_videos_group = partition_by_groups(
original_videos,
get_data_parallel_world_size() // get_sequence_parallel_world_size(),
)
# store prompt mapping
original_videos_local = original_videos_group[
get_data_parallel_rank() // get_sequence_parallel_world_size()
]
original_videos_local = partition_by_size(original_videos_local, batch_size)
# pre-extract the text embeddings
positive_prompts_embeds = _extract_text_embeds()
video_transform = Compose(
[
NaResize(
resolution=(
res_h * res_w
)
** 0.5,
mode="area",
# Upsample image, model only trained for high res.
downsample_only=False,
),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
]
)
# generation loop
for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)):
# read condition latents
cond_latents = []
for video in videos:
video = (
read_video(
os.path.join(video_path, video), output_format="TCHW"
)[0]
/ 255.0
)
print(f"Read video size: {video.size()}")
cond_latents.append(video_transform(video.to(get_device())))
ori_lengths = [video.size(1) for video in cond_latents]
input_videos = cond_latents
cond_latents = [cut_videos(video, sp_size) for video in cond_latents]
runner.dit.to("cpu")
print(f"Encoding videos: {list(map(lambda x: x.size(), cond_latents))}")
runner.vae.to(get_device())
cond_latents = runner.vae_encode(cond_latents)
runner.vae.to("cpu")
runner.dit.to(get_device())
for i, emb in enumerate(text_embeds["texts_pos"]):
text_embeds["texts_pos"][i] = emb.to(get_device())
for i, emb in enumerate(text_embeds["texts_neg"]):
text_embeds["texts_neg"][i] = emb.to(get_device())
samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
runner.dit.to("cpu")
del cond_latents
# dump samples to the output directory
if get_sequence_parallel_rank() == 0:
for path, input, sample, ori_length in zip(
videos, input_videos, samples, ori_lengths
):
if ori_length < sample.shape[0]:
sample = sample[:ori_length]
filename = os.path.join(tgt_path, os.path.basename(path))
# color fix
input = (
rearrange(input[:, None], "c t h w -> t c h w")
if input.ndim == 3
else rearrange(input, "c t h w -> t c h w")
)
if use_colorfix:
sample = wavelet_reconstruction(
sample.to("cpu"), input[: sample.size(0)].to("cpu")
)
else:
sample = sample.to("cpu")
sample = (
rearrange(sample[:, None], "t c h w -> t h w c")
if sample.ndim == 3
else rearrange(sample, "t c h w -> t h w c")
)
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
sample = sample.to(torch.uint8).numpy()
if sample.shape[0] == 1:
mediapy.write_image(filename, sample.squeeze(0))
else:
mediapy.write_video(
filename, sample, fps=24
)
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--video_path", type=str, default="./test_videos")
parser.add_argument("--output_dir", type=str, default="./results")
parser.add_argument("--cfg_scale", type=float, default=6.5)
parser.add_argument("--sample_steps", type=int, default=50)
parser.add_argument("--seed", type=int, default=666)
parser.add_argument("--res_h", type=int, default=720)
parser.add_argument("--res_w", type=int, default=1280)
parser.add_argument("--sp_size", type=int, default=1)
args = parser.parse_args()
runner = configure_runner(args.sp_size)
generation_loop(runner, **vars(args))
|