Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,504 Bytes
42f2c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
"""
Advanced distributed functions for sequence parallel.
"""
from typing import Optional, List
import torch
import torch.distributed as dist
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.fsdp import ShardingStrategy
from .basic import get_global_rank, get_world_size
_DATA_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_GROUP = None
_SEQUENCE_PARALLEL_CPU_GROUP = None
_MODEL_SHARD_CPU_INTER_GROUP = None
_MODEL_SHARD_CPU_INTRA_GROUP = None
_MODEL_SHARD_INTER_GROUP = None
_MODEL_SHARD_INTRA_GROUP = None
_SEQUENCE_PARALLEL_GLOBAL_RANKS = None
def get_data_parallel_group() -> Optional[dist.ProcessGroup]:
"""
Get data parallel process group.
"""
return _DATA_PARALLEL_GROUP
def get_sequence_parallel_group() -> Optional[dist.ProcessGroup]:
"""
Get sequence parallel process group.
"""
return _SEQUENCE_PARALLEL_GROUP
def get_sequence_parallel_cpu_group() -> Optional[dist.ProcessGroup]:
"""
Get sequence parallel CPU process group.
"""
return _SEQUENCE_PARALLEL_CPU_GROUP
def get_data_parallel_rank() -> int:
"""
Get data parallel rank.
"""
group = get_data_parallel_group()
return dist.get_rank(group) if group else get_global_rank()
def get_data_parallel_world_size() -> int:
"""
Get data parallel world size.
"""
group = get_data_parallel_group()
return dist.get_world_size(group) if group else get_world_size()
def get_sequence_parallel_rank() -> int:
"""
Get sequence parallel rank.
"""
group = get_sequence_parallel_group()
return dist.get_rank(group) if group else 0
def get_sequence_parallel_world_size() -> int:
"""
Get sequence parallel world size.
"""
group = get_sequence_parallel_group()
return dist.get_world_size(group) if group else 1
def get_model_shard_cpu_intra_group() -> Optional[dist.ProcessGroup]:
"""
Get the CPU intra process group of model sharding.
"""
return _MODEL_SHARD_CPU_INTRA_GROUP
def get_model_shard_cpu_inter_group() -> Optional[dist.ProcessGroup]:
"""
Get the CPU inter process group of model sharding.
"""
return _MODEL_SHARD_CPU_INTER_GROUP
def get_model_shard_intra_group() -> Optional[dist.ProcessGroup]:
"""
Get the GPU intra process group of model sharding.
"""
return _MODEL_SHARD_INTRA_GROUP
def get_model_shard_inter_group() -> Optional[dist.ProcessGroup]:
"""
Get the GPU inter process group of model sharding.
"""
return _MODEL_SHARD_INTER_GROUP
def init_sequence_parallel(sequence_parallel_size: int):
"""
Initialize sequence parallel.
"""
global _DATA_PARALLEL_GROUP
global _SEQUENCE_PARALLEL_GROUP
global _SEQUENCE_PARALLEL_CPU_GROUP
global _SEQUENCE_PARALLEL_GLOBAL_RANKS
assert dist.is_initialized()
world_size = dist.get_world_size()
rank = dist.get_rank()
data_parallel_size = world_size // sequence_parallel_size
for i in range(data_parallel_size):
start_rank = i * sequence_parallel_size
end_rank = (i + 1) * sequence_parallel_size
ranks = range(start_rank, end_rank)
group = dist.new_group(ranks)
cpu_group = dist.new_group(ranks, backend="gloo")
if rank in ranks:
_SEQUENCE_PARALLEL_GROUP = group
_SEQUENCE_PARALLEL_CPU_GROUP = cpu_group
_SEQUENCE_PARALLEL_GLOBAL_RANKS = list(ranks)
def init_model_shard_group(
*,
sharding_strategy: ShardingStrategy,
device_mesh: Optional[DeviceMesh] = None,
):
"""
Initialize process group of model sharding.
"""
global _MODEL_SHARD_INTER_GROUP
global _MODEL_SHARD_INTRA_GROUP
global _MODEL_SHARD_CPU_INTER_GROUP
global _MODEL_SHARD_CPU_INTRA_GROUP
assert dist.is_initialized()
world_size = dist.get_world_size()
if device_mesh is not None:
num_shards_per_group = device_mesh.shape[1]
elif sharding_strategy == ShardingStrategy.NO_SHARD:
num_shards_per_group = 1
elif sharding_strategy in [
ShardingStrategy.HYBRID_SHARD,
ShardingStrategy._HYBRID_SHARD_ZERO2,
]:
num_shards_per_group = torch.cuda.device_count()
else:
num_shards_per_group = world_size
num_groups = world_size // num_shards_per_group
device_mesh = (num_groups, num_shards_per_group)
gpu_mesh_2d = init_device_mesh("cuda", device_mesh, mesh_dim_names=("inter", "intra"))
cpu_mesh_2d = init_device_mesh("cpu", device_mesh, mesh_dim_names=("inter", "intra"))
_MODEL_SHARD_INTER_GROUP = gpu_mesh_2d.get_group("inter")
_MODEL_SHARD_INTRA_GROUP = gpu_mesh_2d.get_group("intra")
_MODEL_SHARD_CPU_INTER_GROUP = cpu_mesh_2d.get_group("inter")
_MODEL_SHARD_CPU_INTRA_GROUP = cpu_mesh_2d.get_group("intra")
def get_sequence_parallel_global_ranks() -> List[int]:
"""
Get all global ranks of the sequence parallel process group
that the caller rank belongs to.
"""
if _SEQUENCE_PARALLEL_GLOBAL_RANKS is None:
return [dist.get_rank()]
return _SEQUENCE_PARALLEL_GLOBAL_RANKS
def get_next_sequence_parallel_rank() -> int:
"""
Get the next global rank of the sequence parallel process group
that the caller rank belongs to.
"""
sp_global_ranks = get_sequence_parallel_global_ranks()
sp_rank = get_sequence_parallel_rank()
sp_size = get_sequence_parallel_world_size()
return sp_global_ranks[(sp_rank + 1) % sp_size]
def get_prev_sequence_parallel_rank() -> int:
"""
Get the previous global rank of the sequence parallel process group
that the caller rank belongs to.
"""
sp_global_ranks = get_sequence_parallel_global_ranks()
sp_rank = get_sequence_parallel_rank()
sp_size = get_sequence_parallel_world_size()
return sp_global_ranks[(sp_rank + sp_size - 1) % sp_size] |