Bton commited on
Commit
b1be6ae
·
verified ·
1 Parent(s): 87e065f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -50
app.py CHANGED
@@ -1,64 +1,86 @@
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
  demo.launch()
 
1
+ import json
2
+ import re
3
+ import random
4
+ import html
5
+ import requests
6
+ from bs4 import BeautifulSoup
7
  import gradio as gr
8
+ from llama_cpp import Llama
9
+ from llama_cpp_agent import LlamaCppAgent
10
+ from llama_cpp_agent.providers import LlamaCppPythonProvider
11
+ from llama_cpp_agent.chat_history import BasicChatHistory
12
+ from llama_cpp_agent.chat_history.messages import Roles
13
+ from huggingface_hub import hf_hub_download
14
 
15
+ # Download your GGUF model from the HF repo
16
+ :contentReference[oaicite:2]{index=2}
17
+ :contentReference[oaicite:3]{index=3}
 
18
 
19
+ # Scraping logic (adjusted from your script):
20
+ :contentReference[oaicite:4]{index=4}
21
+ :contentReference[oaicite:5]{index=5}
22
+ return {
23
+ "product_title": title_text,
24
+ "price": price_text,
25
+ "rating": rating_text,
26
+ "first_review": review_text,
27
+ :contentReference[oaicite:6]{index=6}
28
+ }
29
 
30
+ # Inference function
31
+ :contentReference[oaicite:7]{index=7}
32
+ :contentReference[oaicite:8]{index=8}
 
 
 
 
 
 
33
 
34
+ # Format prompt
35
+ prompt = json.dumps({
36
+ "product_title": prod["product_title"],
37
+ "price": prod["price"],
38
+ "rating": prod["rating"],
39
+ "first_review": prod["first_review"],
40
+ "about_this_item": prod["about_this_item"],
41
+ }, ensure_ascii=False)
42
+ full_prompt = (
43
+ "Write a product review based on the following product details.\n"
44
+ f"Your input is:\n{prompt}"
45
+ )
46
 
47
+ # Llama.cpp setup
48
+ llm = Llama(model_path=MODEL_PATH, n_ctx=2048)
49
+ provider = LlamaCppPythonProvider(llm)
50
+ agent = LlamaCppAgent(provider, system_prompt="", predefined_messages_formatter_type="CHATML")
51
+ settings = provider.get_provider_default_settings()
52
+ settings.stream = False
53
 
54
+ # Run inference
55
+ stream = agent.get_chat_response(
56
+ full_prompt,
57
+ llm_sampling_settings=settings,
58
+ chat_history=BasicChatHistory(),
59
+ returns_streaming_generator=False
60
+ )
61
+ full_text = "".join(token for token in stream)
62
 
63
+ # Extract JSON from response
64
+ match = re.search(r'\{.*"title".*"review".*\}', full_text, re.DOTALL)
65
+ if match:
66
+ review = json.loads(match.group())
67
+ else:
68
+ review = {"title": "", "review": full_text.strip()}
 
 
69
 
70
+ return prod["product_title"], review["title"], review["review"]
 
71
 
72
+ # Gradio UI
73
+ :contentReference[oaicite:9]{index=9}
74
+ fn=review_generation_ui,
75
+ :contentReference[oaicite:10]{index=10}
76
+ outputs=[
77
+ :contentReference[oaicite:11]{index=11}
78
+ :contentReference[oaicite:12]{index=12}
79
+ :contentReference[oaicite:13]{index=13}
 
 
 
 
 
 
 
 
 
80
  ],
81
+ :contentReference[oaicite:14]{index=14}
82
+ :contentReference[oaicite:15]{index=15}
83
  )
84
 
85
+ :contentReference[oaicite:16]{index=16}
 
86
  demo.launch()