Bton commited on
Commit
6d6882f
·
verified ·
1 Parent(s): ea0454c

Update app.py

Browse files

adjusting strat

Files changed (1) hide show
  1. app.py +49 -65
app.py CHANGED
@@ -1,74 +1,58 @@
1
- import os
2
- import json
3
  import gradio as gr
4
  from llama_cpp import Llama
5
  from huggingface_hub import hf_hub_download
6
- import spaces
7
 
8
- # Hugging Face model repo + filename
9
- REPO_ID = "Bton/llama3-product-reviewer"
10
- FILENAME = "unsloth.Q4_K_M.gguf"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- # ✅ Download model once (cached)
13
- model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME, local_dir=".")
14
-
15
- # ✅ GPU-accelerated review generation
16
- @spaces.GPU
17
- def generate_review(title, price, rating, about):
18
- # 🧠 Load model on GPU only when function is called
19
- llm = Llama(
20
- model_path=model_path,
21
- n_ctx=1024,
22
- n_batch=64,
23
- n_gpu_layers=-1, # Offload all to GPU
24
- use_mlock=False,
25
- verbose=False
26
- )
27
-
28
- product_data = {
29
- "product_title": title,
30
- "price": price,
31
- "rating": rating,
32
- "about_this_item": about
33
- }
34
-
35
- # ⚠️ DO NOT MODIFY PROMPT FORMAT – it's finetuned
36
- prompt = (
37
- "Write a helpful and natural-sounding customer review in JSON format with two fields: "
38
- "\"title\" and \"review\" for the product below.\n\n"
39
- f"{json.dumps(product_data, ensure_ascii=False)}"
40
- )
41
-
42
- response = llm(prompt, max_tokens=512)
43
- raw = response["choices"][0]["text"]
44
-
45
- try:
46
- json_start = raw.find("{")
47
- review_data = json.loads(raw[json_start:])
48
- return review_data.get("title", "Untitled"), review_data.get("review", raw.strip())
49
- except Exception:
50
- return "Error", raw.strip()
51
-
52
- # 🖥️ Gradio Interface
53
  with gr.Blocks() as demo:
54
- gr.Markdown("## 📝 LLaMA3 Product Review Generator (ZeroGPU 🚀)")
55
-
56
- with gr.Row():
57
- title = gr.Textbox(label="Product Title", placeholder="Ergonomic Office Chair")
58
- price = gr.Textbox(label="Price", placeholder="$129.99")
59
- rating = gr.Textbox(label="Rating", placeholder="4.6 out of 5 stars")
60
-
61
- about = gr.Textbox(
62
- label="About This Item",
63
- placeholder="• Breathable mesh back\n• Adjustable lumbar support\n• Height-adjustable armrests",
64
- lines=4
65
- )
66
-
67
- btn = gr.Button("Generate Review")
68
 
69
- out_title = gr.Textbox(label="Generated Title")
70
- out_review = gr.Textbox(label="Generated Review", lines=5)
 
 
 
71
 
72
- btn.click(generate_review, inputs=[title, price, rating, about], outputs=[out_title, out_review])
 
73
 
74
- demo.launch()
 
 
 
 
1
  import gradio as gr
2
  from llama_cpp import Llama
3
  from huggingface_hub import hf_hub_download
 
4
 
5
+ # Download your GGUF model
6
+ model_path = hf_hub_download(
7
+ repo_id="Bton/llama3-product-reviewer",
8
+ filename="unsloth.Q4_K_M.gguf",
9
+ local_dir="."
10
+ )
11
+
12
+ # Load model with chatml formatting
13
+ llm = Llama(
14
+ model_path=model_path,
15
+ chat_format="chatml",
16
+ n_ctx=4096,
17
+ n_threads=4,
18
+ n_gpu_layers=-1,
19
+ use_mlock=False,
20
+ verbose=False
21
+ )
22
+
23
+ def generate_response(message, history, system_message, max_tokens, temperature, top_p):
24
+ messages = []
25
+ if system_message.strip():
26
+ messages.append({"role": "system", "content": system_message})
27
+ if history:
28
+ messages += history
29
+ messages.append({"role": "user", "content": message})
30
+
31
+ response_text = ""
32
+ for chunk in llm.create_chat_completion(
33
+ messages=messages,
34
+ stream=True,
35
+ max_tokens=max_tokens,
36
+ temperature=temperature,
37
+ top_p=top_p,
38
+ ):
39
+ if "content" in chunk["choices"][0]["delta"]:
40
+ response_text += chunk["choices"][0]["delta"]["content"]
41
+ yield history + [{"role": "user", "content": message}, {"role": "assistant", "content": response_text}], ""
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  with gr.Blocks() as demo:
44
+ gr.Markdown("## Bton/llama3-product-reviewer")
45
+ chatbot = gr.Chatbot(label="Chat")
46
+ msg = gr.Textbox(placeholder="Type your message...", label="Message")
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ with gr.Accordion("⚙️ Advanced", open=False):
49
+ system_msg = gr.Textbox(value="You are a helpful assistant.", label="System Message")
50
+ max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, label="Max tokens")
51
+ temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature")
52
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
53
 
54
+ def chat_submit(message, chat_history, system_message, max_tokens, temperature, top_p):
55
+ yield from generate_response(message, chat_history, system_message, max_tokens, temperature, top_p)
56
 
57
+ msg.submit(chat_submit, [msg, chatbot, system_msg, max_tokens, temperature, top_p], [chatbot, msg])
58
+ demo.launch()