Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,181 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
import random
|
4 |
-
|
5 |
-
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
|
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=
|
46 |
width=width,
|
47 |
height=height,
|
48 |
generator=generator,
|
49 |
).images[0]
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
72 |
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
|
75 |
-
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
)
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
)
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
with gr.Row():
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
gr.
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
],
|
150 |
-
|
|
|
151 |
)
|
152 |
|
|
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import os
|
4 |
import random
|
5 |
+
import uuid
|
6 |
+
from datetime import datetime
|
7 |
from diffusers import DiffusionPipeline
|
8 |
import torch
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
|
12 |
+
NUM_INFERENCE_STEPS = 8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
15 |
+
# Constants
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
17 |
|
18 |
+
# Create permanent storage directory for Flux generated images
|
19 |
+
SAVE_DIR = "saved_images"
|
20 |
+
if not os.path.exists(SAVE_DIR):
|
21 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
22 |
+
|
23 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
24 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
25 |
+
|
26 |
+
@spaces.GPU
|
27 |
+
def generate_flux_image(
|
28 |
+
prompt: str,
|
29 |
+
seed: int,
|
30 |
+
randomize_seed: bool,
|
31 |
+
width: int,
|
32 |
+
height: int,
|
33 |
+
guidance_scale: float,
|
34 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
35 |
+
) -> Image.Image:
|
36 |
+
"""Generate image using Flux pipeline"""
|
37 |
if randomize_seed:
|
38 |
seed = random.randint(0, MAX_SEED)
|
39 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
40 |
+
prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
|
41 |
+
image = flux_pipeline(
|
|
|
42 |
prompt=prompt,
|
|
|
43 |
guidance_scale=guidance_scale,
|
44 |
+
num_inference_steps=NUM_INFERENCE_STEPS,
|
45 |
width=width,
|
46 |
height=height,
|
47 |
generator=generator,
|
48 |
).images[0]
|
49 |
+
|
50 |
+
# Save the generated image
|
51 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
52 |
+
unique_id = str(uuid.uuid4())[:8]
|
53 |
+
filename = f"{timestamp}_{unique_id}.png"
|
54 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
55 |
+
image.save(filepath)
|
56 |
+
|
57 |
+
return image, seed, filepath
|
58 |
+
|
59 |
+
# Gradio Interface
|
60 |
+
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown("""
|
62 |
+
## Game Asset Generation with FLUX
|
63 |
+
* Enter a prompt to generate a game asset image
|
64 |
+
* Images are automatically saved to the 'saved_images' directory
|
65 |
+
* [Flux-Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
|
66 |
+
* [Flux Game Assets LoRA](https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2)
|
67 |
+
* [Hyper FLUX 8Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD)
|
68 |
+
""")
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
# Flux image generation inputs
|
73 |
prompt = gr.Text(
|
74 |
+
label="Prompt",
|
75 |
+
placeholder="Enter your game asset description",
|
76 |
+
lines=3
|
|
|
|
|
77 |
)
|
78 |
+
|
79 |
+
with gr.Accordion("Generation Settings", open=True):
|
80 |
+
seed = gr.Slider(
|
81 |
+
minimum=0,
|
82 |
+
maximum=MAX_SEED,
|
83 |
+
label="Seed",
|
84 |
+
value=42,
|
85 |
+
step=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
width = gr.Slider(
|
91 |
+
minimum=512,
|
92 |
+
maximum=1024,
|
93 |
+
label="Width",
|
94 |
+
value=1024,
|
95 |
+
step=16
|
96 |
+
)
|
97 |
+
height = gr.Slider(
|
98 |
+
minimum=512,
|
99 |
+
maximum=1024,
|
100 |
+
label="Height",
|
101 |
+
value=1024,
|
102 |
+
step=16
|
103 |
+
)
|
104 |
+
|
105 |
+
guidance_scale = gr.Slider(
|
106 |
+
minimum=0.0,
|
107 |
+
maximum=10.0,
|
108 |
+
label="Guidance Scale",
|
109 |
+
value=3.5,
|
110 |
+
step=0.1
|
111 |
)
|
112 |
|
113 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
114 |
+
|
115 |
+
with gr.Column():
|
116 |
+
generated_image = gr.Image(
|
117 |
+
label="Generated Asset",
|
118 |
+
type="pil",
|
119 |
+
interactive=False
|
120 |
+
)
|
121 |
+
|
122 |
with gr.Row():
|
123 |
+
seed_output = gr.Number(label="Seed Used", interactive=False)
|
124 |
+
file_path = gr.Text(label="Saved To", interactive=False)
|
125 |
+
|
126 |
+
download_btn = gr.DownloadButton(
|
127 |
+
label="Download Image",
|
128 |
+
visible=False
|
129 |
+
)
|
130 |
|
131 |
+
# Event handlers
|
132 |
+
generate_btn.click(
|
133 |
+
generate_flux_image,
|
134 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
|
135 |
+
outputs=[generated_image, seed_output, file_path],
|
136 |
+
).then(
|
137 |
+
lambda filepath: gr.DownloadButton(visible=True, value=filepath),
|
138 |
+
inputs=[file_path],
|
139 |
+
outputs=[download_btn]
|
140 |
+
)
|
141 |
|
142 |
+
# Examples
|
143 |
+
gr.Examples(
|
144 |
+
examples=[
|
145 |
+
["medieval sword with glowing runes"],
|
146 |
+
["wooden treasure chest with gold coins"],
|
147 |
+
["health potion bottle with red liquid"],
|
148 |
+
["stone castle tower"],
|
149 |
+
["pixel art coin sprite"],
|
150 |
+
["low poly tree"],
|
151 |
+
["fantasy spell book"],
|
152 |
+
["iron shield with dragon emblem"],
|
|
|
|
|
153 |
],
|
154 |
+
inputs=prompt,
|
155 |
+
label="Example Prompts"
|
156 |
)
|
157 |
|
158 |
+
# Initialize Flux pipeline
|
159 |
if __name__ == "__main__":
|
160 |
+
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|
161 |
+
from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
|
162 |
+
|
163 |
+
# Initialize Flux pipeline
|
164 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
165 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
166 |
+
|
167 |
+
dtype = torch.bfloat16
|
168 |
+
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
|
169 |
+
file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
|
170 |
+
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
171 |
+
quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
|
172 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
173 |
+
if ".gguf" in file_url:
|
174 |
+
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
|
175 |
+
else:
|
176 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
|
177 |
+
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
178 |
+
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
|
179 |
+
flux_pipeline.to("cuda")
|
180 |
+
|
181 |
+
demo.launch()
|