--- title: Laban Movement Analysis emoji: ๐Ÿฉฐ colorFrom: purple colorTo: green app_file: app.py sdk: gradio sdk_version: 5.33.0 pinned: false tags: - laban-movement-analysis - pose-estimation - movement-analysis - video-analysis - youtube - vimeo - mcp - agent-ready - computer-vision - mediapipe - yolo - gradio - agentic-analysis - overlay-video - temporal-patterns short_description: Laban Movement Analysis (LMA) from pose estimation license: apache-2.0 --- # ๐Ÿฉฐ Laban Movement Analysis PyPI - Version **Advanced video movement analysis platform** combining Laban Movement Analysis (LMA) principles with modern AI pose estimation, intelligent analysis, and interactive visualization. ## ๐ŸŒŸ Key Features ### ๐Ÿ“Š **Multi-Model Pose Estimation** - **15 different pose estimation models** from multiple sources: - **MediaPipe**: `mediapipe-lite`, `mediapipe-full`, `mediapipe-heavy` - **MoveNet**: `movenet-lightning`, `movenet-thunder` - **YOLO v8**: `yolo-v8-n/s/m/l/x` (5 variants) - **YOLO v11**: `yolo-v11-n/s/m/l/x` (5 variants) ### ๐ŸŽฅ **Comprehensive Video Processing** - **JSON Analysis Output**: Detailed movement metrics with temporal data - **Annotated Video Generation**: Pose overlay with Laban movement data - **URL Support**: Direct processing from YouTube, Vimeo, and video URLs - **Custom Overlay Component**: `gradio_overlay_video` for controlled layered visualization ### ๐Ÿค– **Agentic Intelligence** - **SUMMARY Analysis**: Narrative movement interpretation with temporal patterns - **STRUCTURED Analysis**: Quantitative breakdowns and statistical insights - **MOVEMENT FILTERS**: Pattern detection with intelligent filtering - **Laban Interpretation**: Professional movement quality assessment ### ๐ŸŽจ **Interactive Visualization** - **Standard Analysis Tab**: Core pose estimation and LMA processing - **Overlay Visualization Tab**: Interactive layered video display - **Agentic Analysis Tab**: AI-powered movement insights and filtering ## Installation ```bash pip install gradio_labanmovementanalysis ``` ## Usage ```python # app.py โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ """ Laban Movement Analysis โ€“ modernised Gradio Space Author: Csaba (BladeSzaSza) """ import gradio as gr import os # from backend.gradio_labanmovementanalysis import LabanMovementAnalysis from gradio_labanmovementanalysis import LabanMovementAnalysis # Import agent API if available # Initialize agent API if available agent_api = None try: from gradio_labanmovementanalysis.agent_api import ( LabanAgentAPI, PoseModel, MovementDirection, MovementIntensity ) agent_api = LabanAgentAPI() except Exception as e: print(f"Warning: Agent API not available: {e}") agent_api = None # Initialize components try: analyzer = LabanMovementAnalysis( enable_visualization=True ) print("โœ… Core features initialized successfully") except Exception as e: print(f"Warning: Some features may not be available: {e}") analyzer = LabanMovementAnalysis() def process_video_enhanced(video_input, model, enable_viz, include_keypoints): """Enhanced video processing with all new features.""" if not video_input: return {"error": "No video provided"}, None try: # Handle both file upload and URL input video_path = video_input.name if hasattr(video_input, 'name') else video_input json_result, viz_result = analyzer.process_video( video_path, model=model, enable_visualization=enable_viz, include_keypoints=include_keypoints ) return json_result, viz_result except Exception as e: error_result = {"error": str(e)} return error_result, None def process_video_standard(video : str, model : str, include_keypoints : bool) -> dict: """ Processes a video file using the specified pose estimation model and returns movement analysis results. Args: video (str): Path to the video file to be analyzed. model (str): The name of the pose estimation model to use (e.g., "mediapipe-full", "movenet-thunder", etc.). include_keypoints (bool): Whether to include raw keypoint data in the output. Returns: dict: - A dictionary containing the movement analysis results in JSON format, or an error message if processing fails. Notes: - Visualization is disabled in this standard processing function. - If the input video is None, both return values will be None. - If an error occurs during processing, the first return value will be a dictionary with an "error" key. """ if video is None: return None try: json_output = analyzer.process( video, model=model, include_keypoints=include_keypoints ) return json_output except (RuntimeError, ValueError, OSError) as e: return {"error": str(e)} # โ”€โ”€ 4. Build UI โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ def create_demo() -> gr.Blocks: with gr.Blocks( title="Laban Movement Analysis", theme='gstaff/sketch', fill_width=True, ) as demo: # gr.api(process_video_standard, api_name="process_video") # <-- Remove from here # โ”€โ”€ Hero banner โ”€โ”€ gr.Markdown( """ # ๐ŸŽญ Laban Movement Analysis Pose estimation โ€ข AI action recognition โ€ข Movement Analysis """ ) with gr.Tabs(): # Tab 1: Standard Analysis with gr.Tab("๐ŸŽฌ Standard Analysis"): gr.Markdown(""" ### Upload a video file to analyze movement using traditional LMA metrics with pose estimation. """) # โ”€โ”€ Workspace โ”€โ”€ with gr.Row(equal_height=True): # Input column with gr.Column(scale=1, min_width=260): analyze_btn_enh = gr.Button("๐Ÿš€ Analyze Movement", variant="primary", size="lg") video_in = gr.Video(label="Upload Video", sources=["upload"], format="mp4") # URL input option url_input_enh = gr.Textbox( label="Or Enter Video URL", placeholder="YouTube URL, Vimeo URL, or direct video URL", info="Leave file upload empty to use URL" ) gr.Markdown("**Model Selection**") model_sel = gr.Dropdown( choices=[ # MediaPipe variants "mediapipe-lite", "mediapipe-full", "mediapipe-heavy", # MoveNet variants "movenet-lightning", "movenet-thunder", # YOLO v8 variants "yolo-v8-n", "yolo-v8-s", "yolo-v8-m", "yolo-v8-l", "yolo-v8-x", # YOLO v11 variants "yolo-v11-n", "yolo-v11-s", "yolo-v11-m", "yolo-v11-l", "yolo-v11-x" ], value="mediapipe-full", label="Advanced Pose Models", info="15 model variants available" ) with gr.Accordion("Analysis Options", open=False): enable_viz = gr.Radio([("Yes", 1), ("No", 0)], value=1, label="Visualization") include_kp = gr.Radio([("Yes", 1), ("No", 0)], value=0, label="Raw Keypoints") gr.Examples( examples=[ ["examples/balette.mp4"], ["https://www.youtube.com/shorts/RX9kH2l3L8U"], ["https://vimeo.com/815392738"], ["https://vimeo.com/548964931"], ["https://videos.pexels.com/video-files/5319339/5319339-uhd_1440_2560_25fps.mp4"], ], inputs=url_input_enh, label="Examples" ) # Output column with gr.Column(scale=2, min_width=320): viz_out = gr.Video(label="Annotated Video", scale=1, height=400) with gr.Accordion("Raw JSON", open=True): json_out = gr.JSON(label="Movement Analysis", elem_classes=["json-output"]) # Wiring def process_enhanced_input(file_input, url_input, model, enable_viz, include_keypoints): """Process either file upload or URL input.""" video_source = file_input if file_input else url_input return process_video_enhanced(video_source, model, enable_viz, include_keypoints) analyze_btn_enh.click( fn=process_enhanced_input, inputs=[video_in, url_input_enh, model_sel, enable_viz, include_kp], outputs=[json_out, viz_out], api_name="analyze_enhanced" ) # Footer with gr.Row(): gr.Markdown( """ **Built by Csaba Bolyรณs** [GitHub](https://github.com/bladeszasza) โ€ข [HF](https://huggingface.co/BladeSzaSza) """ ) return demo # Register API endpoint OUTSIDE the UI gr.api(process_video_standard, api_name="process_video") if __name__ == "__main__": demo = create_demo() demo.launch(server_name="0.0.0.0", share=True, server_port=int(os.getenv("PORT", 7860)), mcp_server=True) ``` ## `LabanMovementAnalysis` ### Initialization
name type default description
default_model ```python str ``` "mediapipe" Default pose estimation model ("mediapipe", "movenet", "yolo")
enable_visualization ```python bool ``` True Whether to generate visualization video by default
include_keypoints ```python bool ``` False Whether to include raw keypoints in JSON output
enable_webrtc ```python bool ``` False Whether to enable WebRTC real-time analysis
label ```python typing.Optional[str][str, None] ``` None Component label
every ```python typing.Optional[float][float, None] ``` None None
show_label ```python typing.Optional[bool][bool, None] ``` None None
container ```python bool ``` True None
scale ```python typing.Optional[int][int, None] ``` None None
min_width ```python int ``` 160 None
interactive ```python typing.Optional[bool][bool, None] ``` None None
visible ```python bool ``` True None
elem_id ```python typing.Optional[str][str, None] ``` None None
elem_classes ```python typing.Optional[typing.List[str]][ typing.List[str][str], None ] ``` None None
render ```python bool ``` True None
### User function The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both). - When used as an Input, the component only impacts the input signature of the user function. - When used as an output, the component only impacts the return signature of the user function. The code snippet below is accurate in cases where the component is used as both an input and an output. - **As output:** Is passed, processed data for analysis. - **As input:** Should return, analysis results. ```python def predict( value: typing.Dict[str, typing.Any][str, typing.Any] ) -> typing.Any: return value ```