File size: 25,177 Bytes
3fcac1c
e49993e
3fcac1c
 
e49993e
 
3fcac1c
efef91a
 
f2779b3
efef91a
e49993e
 
3fcac1c
 
e49993e
 
 
 
 
 
 
efef91a
e49993e
efef91a
 
 
e49993e
 
 
 
 
 
 
 
 
3fcac1c
e49993e
 
3fcac1c
e49993e
 
 
 
 
 
 
 
 
 
 
3fcac1c
 
e49993e
 
 
 
 
 
efef91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fcac1c
efef91a
e49993e
efef91a
3fcac1c
 
efef91a
3fcac1c
e49993e
efef91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49993e
efef91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49993e
3fcac1c
 
e49993e
3fcac1c
 
 
e49993e
efef91a
3fcac1c
 
 
efef91a
3fcac1c
 
 
 
e49993e
 
efef91a
e49993e
3fcac1c
e49993e
3fcac1c
 
 
 
e49993e
3fcac1c
 
 
 
 
 
 
e49993e
3fcac1c
 
e49993e
3fcac1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49993e
3fcac1c
efef91a
 
3fcac1c
e49993e
 
3fcac1c
 
 
 
 
e49993e
3fcac1c
 
e49993e
3fcac1c
 
 
 
 
 
 
 
 
 
e49993e
 
efef91a
 
 
e49993e
 
 
3fcac1c
 
e49993e
 
 
efef91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fcac1c
 
 
 
 
efef91a
3fcac1c
 
 
efef91a
 
e49993e
3fcac1c
 
efef91a
3fcac1c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# app.py  ─────────────────────────────────────────────────────────
"""
Laban Movement Analysis – modernised Gradio Space
Author: Csaba (BladeSzaSza)
"""
import gradio as gr
import os
from pathlib import Path
# from backend.gradio_labanmovementanalysis import LabanMovementAnalysis
from backend.gradio_labanmovementanalysis import LabanMovementAnalysis
from gradio_overlay_video import OverlayVideo

# Import agent API if available
# Initialize agent API if available
agent_api = None
try:
    from gradio_labanmovementanalysis.agent_api import (
        LabanAgentAPI,
        PoseModel,
        MovementDirection,
        MovementIntensity
    )
    agent_api = LabanAgentAPI()
    HAS_AGENT_API = True
except Exception as e:
    print(f"Warning: Agent API not available: {e}")
    agent_api = None
    HAS_AGENT_API = False
# Initialize components
try:
    analyzer = LabanMovementAnalysis(
        enable_visualization=True
    )
    print("βœ… Core features initialized successfully")
except Exception as e:
    print(f"Warning: Some features may not be available: {e}")
    analyzer = LabanMovementAnalysis()


def process_video_enhanced(video_input, model, enable_viz, include_keypoints):
    """Enhanced video processing with all new features."""
    if not video_input:
        return {"error": "No video provided"}, None
    
    try:
        # Handle both file upload and URL input
        video_path = video_input.name if hasattr(video_input, 'name') else video_input
        
        json_result, viz_result = analyzer.process_video(
            video_path,
            model=model,
            enable_visualization=enable_viz,
            include_keypoints=include_keypoints
        )
        return json_result, viz_result
    except Exception as e:
        error_result = {"error": str(e)}
        return error_result, None

def process_video_standard(video : str, model : str, include_keypoints : bool) -> dict:
    """
    Processes a video file using the specified pose estimation model and returns movement analysis results.

    Args:
        video (str): Path to the video file to be analyzed.
        model (str): The name of the pose estimation model to use (e.g., "mediapipe-full", "movenet-thunder", etc.).
        include_keypoints (bool): Whether to include raw keypoint data in the output.

    Returns:
        dict:
            - A dictionary containing the movement analysis results in JSON format, or an error message if processing fails.


    Notes:
        - Visualization is disabled in this standard processing function.
        - If the input video is None, both return values will be None.
        - If an error occurs during processing, the first return value will be a dictionary with an "error" key.
    """
    if video is None:
        return None
    try:
        json_output, _ = analyzer.process_video(
            video,
            model=model,
            enable_visualization=False,
            include_keypoints=include_keypoints
        )
        return json_output
    except (RuntimeError, ValueError, OSError) as e:
        return {"error": str(e)}

def process_video_for_agent(video, model, output_format="summary"):
    """Process video with agent-friendly output format."""
    if not HAS_AGENT_API or agent_api is None:
        return {"error": "Agent API not available"}
    
    if not video:
        return {"error": "No video provided"}
    
    try:
        model_enum = PoseModel(model)
        result = agent_api.analyze(video, model=model_enum, generate_visualization=False)
        
        if output_format == "summary":
            return {"summary": agent_api.get_movement_summary(result)}
        elif output_format == "structured":
            return {
                "success": result.success,
                "direction": result.dominant_direction.value,
                "intensity": result.dominant_intensity.value,
                "speed": result.dominant_speed,
                "fluidity": result.fluidity_score,
                "expansion": result.expansion_score,
                "segments": len(result.movement_segments)
            }
        else:  # json
            return result.raw_data
    except Exception as e:
        return {"error": str(e)}

# Batch processing removed due to MediaPipe compatibility issues

# process_standard_for_agent is now imported from backend

# Movement filtering removed due to MediaPipe compatibility issues

# Import agentic analysis functions from backend
try:
    from gradio_labanmovementanalysis.agentic_analysis import (
        generate_agentic_analysis,
        process_standard_for_agent
    )
except ImportError:
    # Fallback if backend module is not available
    def generate_agentic_analysis(json_data, analysis_type, filter_direction="any", filter_intensity="any", filter_min_fluidity=0.0, filter_min_expansion=0.0):
        return {"error": "Agentic analysis backend not available"}
    
    def process_standard_for_agent(json_data, output_format="summary"):
        return {"error": "Agent conversion backend not available"}

# ── 4.  Build UI ─────────────────────────────────────────────────
def create_demo() -> gr.Blocks:
    with gr.Blocks(
        title="Laban Movement Analysis",
        theme='gstaff/sketch',
        fill_width=True,
    ) as demo:
        # gr.api(process_video_standard, api_name="process_video") 
        # ── Hero banner ──
        gr.Markdown(
            """
            # 🩰 Laban Movement Analysis 
            
            Pose estimation β€’ AI action recognition β€’ Movement Analysis 
            """
        )
        with gr.Tabs():
            # Tab 1: Standard Analysis
            with gr.Tab("🎭 Standard Analysis"):
                gr.Markdown("""
                ### Upload a video file to analyze movement using traditional LMA metrics with pose estimation.
                """)
                # ── Workspace ──
                with gr.Row(equal_height=True):
                    # Input column
                    with gr.Column(scale=1, min_width=260):
                        
                        analyze_btn_enh = gr.Button("πŸš€ Analyze Movement", variant="primary", size="lg")
                        video_in = gr.Video(label="Upload Video", sources=["upload"], format="mp4")
                        # URL input option
                        url_input_enh = gr.Textbox(
                            label="Or Enter Video URL",
                            placeholder="YouTube URL, Vimeo URL, or direct video URL",
                            info="Leave file upload empty to use URL"
                        )
                       
                        gr.Markdown("**Model Selection**")
                        
                        model_sel = gr.Dropdown(
                            choices=[
                                # MediaPipe variants
                                "mediapipe-lite", "mediapipe-full", "mediapipe-heavy",
                                # MoveNet variants
                                "movenet-lightning", "movenet-thunder",
                                # YOLO v8 variants
                                "yolo-v8-n", "yolo-v8-s", "yolo-v8-m", "yolo-v8-l", "yolo-v8-x",
                                # YOLO v11 variants
                                "yolo-v11-n", "yolo-v11-s", "yolo-v11-m", "yolo-v11-l", "yolo-v11-x"
                            ],
                            value="mediapipe-full",
                            label="Advanced Pose Models",
                            info="15 model variants available"
                        )
                        
                        with gr.Accordion("Analysis Options", open=False):
                            enable_viz = gr.Radio([("Create", 1), ("Dismiss", 0)], value=1, label="Visualization")
                            include_kp = gr.Radio([("Include", 1), ("Exclude", 0)], value=1, label="Raw Keypoints")

                        gr.Examples(
                            examples=[
                                ["examples/balette.mp4"],
                                ["https://www.youtube.com/shorts/RX9kH2l3L8U"],
                                ["https://vimeo.com/815392738"],
                                ["https://vimeo.com/548964931"],
                                ["https://videos.pexels.com/video-files/5319339/5319339-uhd_1440_2560_25fps.mp4"],
                            ],
                            inputs=url_input_enh,
                            label="Examples"
                        )


                    # Output column
                    with gr.Column(scale=2, min_width=320):
                        viz_out = gr.Video(label="Annotated Video", scale=1, height=400)
                        with gr.Accordion("Raw JSON", open=True):
                            json_out = gr.JSON(label="Movement Analysis", elem_classes=["json-output"])

                # Wiring
                def process_enhanced_input(file_input, url_input, model, enable_viz, include_keypoints):
                    """Process either file upload or URL input."""
                    video_source = file_input if file_input else url_input
                    [json_out, viz_out] = process_video_enhanced(video_source, model, enable_viz, include_keypoints)
                    overlay_video.value = (None, json_out)
                    return [json_out, viz_out]
                
                analyze_btn_enh.click(
                    fn=process_enhanced_input,
                    inputs=[video_in, url_input_enh, model_sel, enable_viz, include_kp],
                    outputs=[json_out, viz_out],
                    api_name="analyze_enhanced"
                )

            with gr.Tab("🎬 Overlayed Visualisation"):
                gr.Markdown(
                    "# 🩰 Interactive Pose Visualization\n"
                    "## See the movement analysis in action with an interactive overlay. "
                    "Analyze video @ 🎬 Standard Analysis tab"
                )
                with gr.Row(equal_height=True, min_height=240):
                    with gr.Column(scale=1):
                        overlay_video = OverlayVideo(
                                value=(None, json_out),
                                autoplay=True,
                                interactive=False
                            )
                
                       
                # Update overlay when JSON changes
                def update_overlay(json_source):
                    """Update overlay video with JSON data from analysis or upload."""
                    if json_source:
                        return OverlayVideo(value=("", json_source), autoplay=True, interactive=False)
                    return OverlayVideo(value=("", None), autoplay=True, interactive=False)
                
                # Connect JSON output from analysis to overlay
                json_out.change(
                    fn=update_overlay,
                    inputs=[json_out],
                    outputs=[overlay_video]
                )

            # Tab 3: Agentic Analysis
            with gr.Tab("πŸ€– Agentic Analysis"):
                gr.Markdown("""
                ### Intelligent Movement Interpretation
                AI-powered analysis using the processed data from the Standard Analysis tab.
                """)
                
                with gr.Row(equal_height=True):
                    # Left column - Video display (sourced from first tab)
                    with gr.Column(scale=1, min_width=400):
                        gr.Markdown("**Source Video** *(from Standard Analysis)*")
                        agentic_video_display = gr.Video(
                            label="Analyzed Video", 
                            interactive=False,
                            height=350
                        )
                        
                        # Model info display (sourced from first tab)
                        gr.Markdown("**Model Used** *(from Standard Analysis)*")
                        agentic_model_display = gr.Textbox(
                            label="Pose Model",
                            interactive=False,
                            value="No analysis completed yet"
                        )
                    
                    # Right column - Analysis options and output
                    with gr.Column(scale=1, min_width=400):
                        gr.Markdown("**Analysis Type**")
                        agentic_analysis_type = gr.Radio(
                            choices=[
                                ("🎯 SUMMARY", "summary"),
                                ("πŸ“Š STRUCTURED", "structured"), 
                                ("πŸ” MOVEMENT FILTERS", "movement_filters")
                            ],
                            value="summary",
                            label="Choose Analysis",
                            info="Select the type of intelligent analysis"
                        )
                        
                        # Movement filters options (shown when movement_filters is selected)
                        with gr.Group(visible=False) as movement_filter_options:
                            gr.Markdown("**Filter Criteria**")
                            filter_direction = gr.Dropdown(
                                choices=["any", "up", "down", "left", "right", "forward", "backward", "stationary"],
                                value="any",
                                label="Dominant Direction"
                            )
                            filter_intensity = gr.Dropdown(
                                choices=["any", "low", "medium", "high"],
                                value="any", 
                                label="Movement Intensity"
                            )
                            filter_min_fluidity = gr.Slider(0.0, 1.0, 0.0, label="Minimum Fluidity Score")
                            filter_min_expansion = gr.Slider(0.0, 1.0, 0.0, label="Minimum Expansion Score")
                        
                        analyze_agentic_btn = gr.Button("πŸš€ Generate Analysis", variant="primary", size="lg")
                        
                        # Output display
                        with gr.Accordion("Analysis Results", open=True):
                            agentic_output = gr.JSON(label="Intelligent Analysis Results")

                # Show/hide movement filter options based on selection
                def toggle_filter_options(analysis_type):
                    return gr.Group(visible=(analysis_type == "movement_filters"))
                
                agentic_analysis_type.change(
                    fn=toggle_filter_options,
                    inputs=[agentic_analysis_type],
                    outputs=[movement_filter_options]
                )
                
                # Update video display when standard analysis completes
                def update_agentic_video_display(video_input, url_input, model):
                    """Update agentic tab with video and model from standard analysis."""
                    video_source = video_input if video_input else url_input
                    return video_source, f"Model: {model}"
                
                # Link to standard analysis inputs
                video_in.change(
                    fn=update_agentic_video_display,
                    inputs=[video_in, url_input_enh, model_sel],
                    outputs=[agentic_video_display, agentic_model_display]
                )
                
                url_input_enh.change(
                    fn=update_agentic_video_display,
                    inputs=[video_in, url_input_enh, model_sel],
                    outputs=[agentic_video_display, agentic_model_display]
                )
                
                model_sel.change(
                    fn=update_agentic_video_display,
                    inputs=[video_in, url_input_enh, model_sel],
                    outputs=[agentic_video_display, agentic_model_display]
                )
                
                # Hook up the Generate Analysis button
                def process_agentic_analysis(json_data, analysis_type, filter_direction, filter_intensity, filter_min_fluidity, filter_min_expansion):
                    """Process agentic analysis based on user selection."""
                    return generate_agentic_analysis(
                        json_data, 
                        analysis_type, 
                        filter_direction, 
                        filter_intensity, 
                        filter_min_fluidity, 
                        filter_min_expansion
                    )
                
                analyze_agentic_btn.click(
                    fn=process_agentic_analysis,
                    inputs=[
                        json_out,  # JSON data from standard analysis
                        agentic_analysis_type,
                        filter_direction,
                        filter_intensity, 
                        filter_min_fluidity,
                        filter_min_expansion
                    ],
                    outputs=[agentic_output],
                    api_name="analyze_agentic"
                )
                
                # Auto-update agentic analysis when JSON changes and analysis type is summary
                def auto_update_summary(json_data, analysis_type):
                    """Auto-update with summary when new analysis is available."""
                    if json_data and analysis_type == "summary":
                        return generate_agentic_analysis(json_data, "summary")
                    return None
                
                json_out.change(
                    fn=auto_update_summary,
                    inputs=[json_out, agentic_analysis_type],
                    outputs=[agentic_output]
                )

            # Tab 4: About
            with gr.Tab("ℹ️ About"):
                gr.Markdown("""
                # 🩰 Developer Journey: Laban Movement Analysis
                
                ## 🎯 Project Vision
                
                Created to bridge the gap between traditional **Laban Movement Analysis (LMA)** principles and modern **AI-powered pose estimation**, this platform represents a comprehensive approach to understanding human movement through technology.
                
                ## πŸ› οΈ Technical Architecture
                
                ### **Core Foundation**
                - **15 Pose Estimation Models** from diverse sources and frameworks
                - **Multi-format Video Processing** with URL support (YouTube, Vimeo, direct links)
                - **Real-time Analysis Pipeline** with configurable model selection
                - **MCP-Compatible API** for AI agent integration
                
                ### **Pose Model Ecosystem**
                ```
                πŸ“Š MediaPipe Family (Google)     β†’ 3 variants (lite/full/heavy)
                ⚑ MoveNet Family (TensorFlow)   β†’ 2 variants (lightning/thunder)  
                🎯 YOLO v8 Family (Ultralytics) β†’ 5 variants (n/s/m/l/x)
                πŸ”₯ YOLO v11 Family (Ultralytics)β†’ 5 variants (n/s/m/l/x)
                ```
                
                ## 🎨 Innovation Highlights
                
                ### **1. Custom Gradio Component: `gradio_overlay_video`**
                - **Layered Visualization**: Controlled overlay of pose data on original video
                - **Interactive Controls**: Frame-by-frame analysis with movement metrics
                - **Synchronized Playback**: Real-time correlation between video and data
                
                ### **2. Agentic Analysis Engine**
                Beyond raw pose detection, we've developed intelligent interpretation layers:
                
                - **🎯 SUMMARY**: Narrative movement interpretation with temporal pattern analysis
                - **πŸ“Š STRUCTURED**: Comprehensive quantitative breakdowns with statistical insights
                - **πŸ” MOVEMENT FILTERS**: Advanced pattern detection with customizable criteria
                
                ### **3. Temporal Pattern Recognition**
                - **Movement Consistency Tracking**: Direction and intensity variation analysis
                - **Complexity Scoring**: Multi-dimensional movement sophistication metrics
                - **Sequence Detection**: Continuous movement pattern identification
                - **Laban Integration**: Professional movement quality assessment using LMA principles
                
                ## πŸ“ˆ Processing Pipeline
                
                ```mermaid
                Video Input β†’ Pose Detection β†’ LMA Analysis β†’ JSON Output
                     ↓              ↓              ↓           ↓
                URL/Upload β†’ 15 Models β†’ Temporal β†’ Visualization
                     ↓              ↓        Patterns    ↓
                Preprocessing β†’ Keypoints β†’ Metrics β†’ Agentic Analysis
                ```
                
                ## 🎭 Laban Movement Analysis Integration
                
                Our implementation translates raw pose coordinates into meaningful movement qualities:
                
                - **Effort Qualities**: Intensity, speed, and flow characteristics
                - **Space Usage**: Expansion patterns and directional preferences  
                - **Temporal Dynamics**: Rhythm, acceleration, and movement consistency
                - **Quality Assessment**: Fluidity scores and movement sophistication
                
                ## πŸ”¬ Technical Achievements
                
                ### **Multi-Source Model Integration**
                Successfully unified models from different frameworks:
                - Google's MediaPipe (BlazePose architecture)
                - TensorFlow's MoveNet (lightweight and accurate variants)
                - Ultralytics' YOLO ecosystem (object detection adapted for pose)
                
                ### **Real-Time Processing Capabilities**
                - **Streaming Support**: Frame-by-frame processing with temporal continuity
                - **Memory Optimization**: Efficient handling of large video files
                - **Error Recovery**: Graceful handling of pose detection failures
                
                ### **Agent-Ready Architecture**
                - **MCP Server Integration**: Compatible with AI agent workflows
                - **Structured API**: RESTful endpoints for programmatic access
                - **Flexible Output Formats**: JSON, visualization videos, and metadata
                
                ## 🌟 Future Roadmap
                
                - **3D Pose Integration**: Depth-aware movement analysis
                - **Multi-Person Tracking**: Ensemble and group movement dynamics
                - **Real-Time Streaming**: Live movement analysis capabilities
                - **Machine Learning Enhancement**: Custom models trained on movement data
                
                ## πŸ”§ Built With
                
                - **Frontend**: Gradio 5.33+ with custom Svelte components
                - **Backend**: Python with FastAPI and async processing
                - **Computer Vision**: MediaPipe, TensorFlow, PyTorch, Ultralytics
                - **Analysis**: NumPy, OpenCV, custom Laban algorithms
                - **Deployment**: Hugging Face Spaces with Docker support
                
                ---
                
                ### πŸ‘¨β€πŸ’» Created by **Csaba BolyΓ³s**
                
                *Combining classical movement analysis with cutting-edge AI to unlock new possibilities in human movement understanding.*
                
                **Connect:**  
                [GitHub](https://github.com/bladeszasza) β€’ [Hugging Face](https://huggingface.co/BladeSzaSza) β€’ [LinkedIn](https://www.linkedin.com/in/csaba-bolyΓ³s-00a11767/)
                
                ---
                
                > *"Movement is a language. Technology helps us understand what the body is saying."*
                """)
         
        # Footer
        with gr.Row():
            gr.Markdown(
                """
                **Built by Csaba BolyΓ³s**  
                [GitHub](https://github.com/bladeszasza) β€’ [HF](https://huggingface.co/BladeSzaSza) β€’ [LinkedIn](https://www.linkedin.com/in/csaba-bolyΓ³s-00a11767/)
                """
            )
    return demo


if __name__ == "__main__":
    demo = create_demo()
    demo.launch(server_name="0.0.0.0",
                share=True,
                server_port=int(os.getenv("PORT", 7860)),
                mcp_server=True)