File size: 13,736 Bytes
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import json
import time
import hashlib
from pathlib import Path
from typing import Any, Optional, Dict, Union
import pickle
import shutil
from datetime import datetime, timedelta

class ModelCache:
    """Manages caching for AI models and generated content"""
    
    def __init__(self, cache_dir: Optional[Union[str, Path]] = None):
        if cache_dir is None:
            # Use HuggingFace Spaces persistent storage if available
            if os.path.exists("/data"):
                cache_dir = "/data/cache"
            else:
                cache_dir = Path.home() / ".cache" / "digipal"
        
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(parents=True, exist_ok=True)
        
        # Cache subdirectories
        self.model_cache_dir = self.cache_dir / "models"
        self.generation_cache_dir = self.cache_dir / "generations"
        self.audio_cache_dir = self.cache_dir / "audio"
        
        for dir_path in [self.model_cache_dir, self.generation_cache_dir, self.audio_cache_dir]:
            dir_path.mkdir(exist_ok=True)
        
        # Cache settings
        self.max_cache_size_gb = 10  # Maximum cache size in GB
        self.cache_expiry_days = 7   # Cache expiry in days
        self.generation_cache_enabled = True
        
        # In-memory cache for fast access
        self.memory_cache = {}
        self.cache_stats = self._load_cache_stats()
    
    def cache_model_weights(self, model_id: str, model_data: Any) -> bool:
        """Cache model weights to disk"""
        try:
            model_hash = self._get_hash(model_id)
            cache_path = self.model_cache_dir / f"{model_hash}.pkl"
            
            with open(cache_path, 'wb') as f:
                pickle.dump(model_data, f)
            
            # Update cache stats
            self._update_cache_stats('model', model_id, cache_path.stat().st_size)
            
            return True
        except Exception as e:
            print(f"Failed to cache model {model_id}: {e}")
            return False
    
    def get_cached_model(self, model_id: str) -> Optional[Any]:
        """Retrieve cached model weights"""
        try:
            model_hash = self._get_hash(model_id)
            cache_path = self.model_cache_dir / f"{model_hash}.pkl"
            
            if cache_path.exists():
                # Check if cache is still valid
                if self._is_cache_valid(cache_path):
                    with open(cache_path, 'rb') as f:
                        return pickle.load(f)
            
            return None
        except Exception as e:
            print(f"Failed to load cached model {model_id}: {e}")
            return None
    
    def cache_generation(self, prompt: str, result: Dict[str, Any], 
                        generation_type: str = "monster") -> str:
        """Cache generation results"""
        if not self.generation_cache_enabled:
            return ""
        
        try:
            # Create unique key for this generation
            cache_key = self._get_generation_key(prompt, generation_type)
            cache_dir = self.generation_cache_dir / generation_type / cache_key[:2]
            cache_dir.mkdir(parents=True, exist_ok=True)
            
            cache_file = cache_dir / f"{cache_key}.json"
            
            # Prepare cache data
            cache_data = {
                'prompt': prompt,
                'type': generation_type,
                'timestamp': datetime.now().isoformat(),
                'result': result
            }
            
            # Handle file paths in results
            if 'image' in result and hasattr(result['image'], 'save'):
                image_path = cache_dir / f"{cache_key}_image.png"
                result['image'].save(image_path)
                cache_data['result']['image'] = str(image_path)
            
            if 'model_3d' in result and isinstance(result['model_3d'], str):
                # Copy 3D model to cache
                model_ext = Path(result['model_3d']).suffix
                model_cache_path = cache_dir / f"{cache_key}_model{model_ext}"
                shutil.copy2(result['model_3d'], model_cache_path)
                cache_data['result']['model_3d'] = str(model_cache_path)
            
            # Save cache data
            with open(cache_file, 'w') as f:
                json.dump(cache_data, f, indent=2)
            
            # Update stats
            self._update_cache_stats('generation', cache_key, cache_file.stat().st_size)
            
            return cache_key
            
        except Exception as e:
            print(f"Failed to cache generation: {e}")
            return ""
    
    def get_cached_generation(self, prompt: str, generation_type: str = "monster") -> Optional[Dict[str, Any]]:
        """Retrieve cached generation if available"""
        if not self.generation_cache_enabled:
            return None
        
        try:
            cache_key = self._get_generation_key(prompt, generation_type)
            cache_file = self.generation_cache_dir / generation_type / cache_key[:2] / f"{cache_key}.json"
            
            if cache_file.exists() and self._is_cache_valid(cache_file):
                with open(cache_file, 'r') as f:
                    cache_data = json.load(f)
                
                # Load associated files
                result = cache_data['result']
                
                if 'image' in result and isinstance(result['image'], str):
                    from PIL import Image
                    if os.path.exists(result['image']):
                        result['image'] = Image.open(result['image'])
                
                return result
            
            return None
            
        except Exception as e:
            print(f"Failed to load cached generation: {e}")
            return None
    
    def cache_audio_transcription(self, audio_path: str, transcription: str) -> bool:
        """Cache audio transcription results"""
        try:
            # Get audio file hash
            with open(audio_path, 'rb') as f:
                audio_hash = hashlib.md5(f.read()).hexdigest()
            
            cache_file = self.audio_cache_dir / f"{audio_hash}.json"
            
            cache_data = {
                'audio_path': audio_path,
                'transcription': transcription,
                'timestamp': datetime.now().isoformat()
            }
            
            with open(cache_file, 'w') as f:
                json.dump(cache_data, f)
            
            return True
            
        except Exception as e:
            print(f"Failed to cache audio transcription: {e}")
            return False
    
    def get_cached_transcription(self, audio_path: str) -> Optional[str]:
        """Get cached audio transcription"""
        try:
            with open(audio_path, 'rb') as f:
                audio_hash = hashlib.md5(f.read()).hexdigest()
            
            cache_file = self.audio_cache_dir / f"{audio_hash}.json"
            
            if cache_file.exists() and self._is_cache_valid(cache_file):
                with open(cache_file, 'r') as f:
                    cache_data = json.load(f)
                return cache_data['transcription']
            
            return None
            
        except Exception as e:
            print(f"Failed to load cached transcription: {e}")
            return None
    
    def add_to_memory_cache(self, key: str, value: Any, ttl_seconds: int = 300):
        """Add item to in-memory cache with TTL"""
        expiry_time = time.time() + ttl_seconds
        self.memory_cache[key] = {
            'value': value,
            'expiry': expiry_time
        }
    
    def get_from_memory_cache(self, key: str) -> Optional[Any]:
        """Get item from in-memory cache"""
        if key in self.memory_cache:
            cache_item = self.memory_cache[key]
            if time.time() < cache_item['expiry']:
                return cache_item['value']
            else:
                # Remove expired item
                del self.memory_cache[key]
        return None
    
    def clear_expired_cache(self):
        """Clear expired cache entries"""
        current_time = datetime.now()
        cleared_size = 0
        
        # Clear file cache
        for cache_type in [self.model_cache_dir, self.generation_cache_dir, self.audio_cache_dir]:
            for file_path in cache_type.rglob('*'):
                if file_path.is_file():
                    file_age = current_time - datetime.fromtimestamp(file_path.stat().st_mtime)
                    if file_age > timedelta(days=self.cache_expiry_days):
                        file_size = file_path.stat().st_size
                        file_path.unlink()
                        cleared_size += file_size
        
        # Clear memory cache
        expired_keys = [
            key for key, item in self.memory_cache.items()
            if time.time() > item['expiry']
        ]
        for key in expired_keys:
            del self.memory_cache[key]
        
        print(f"Cleared {cleared_size / (1024**2):.2f} MB of expired cache")
        
        return cleared_size
    
    def get_cache_size(self) -> Dict[str, float]:
        """Get current cache size in MB"""
        sizes = {
            'models': 0,
            'generations': 0,
            'audio': 0,
            'total': 0
        }
        
        # Calculate directory sizes
        for file_path in self.model_cache_dir.rglob('*'):
            if file_path.is_file():
                sizes['models'] += file_path.stat().st_size
        
        for file_path in self.generation_cache_dir.rglob('*'):
            if file_path.is_file():
                sizes['generations'] += file_path.stat().st_size
        
        for file_path in self.audio_cache_dir.rglob('*'):
            if file_path.is_file():
                sizes['audio'] += file_path.stat().st_size
        
        # Convert to MB
        for key in sizes:
            sizes[key] = sizes[key] / (1024 ** 2)
        
        sizes['total'] = sizes['models'] + sizes['generations'] + sizes['audio']
        
        return sizes
    
    def enforce_size_limit(self):
        """Enforce cache size limit by removing oldest entries"""
        cache_size = self.get_cache_size()
        
        if cache_size['total'] > self.max_cache_size_gb * 1024:  # Convert GB to MB
            # Get all cache files with timestamps
            all_files = []
            
            for cache_dir in [self.model_cache_dir, self.generation_cache_dir, self.audio_cache_dir]:
                for file_path in cache_dir.rglob('*'):
                    if file_path.is_file():
                        all_files.append({
                            'path': file_path,
                            'size': file_path.stat().st_size,
                            'mtime': file_path.stat().st_mtime
                        })
            
            # Sort by modification time (oldest first)
            all_files.sort(key=lambda x: x['mtime'])
            
            # Remove files until under limit
            current_size = cache_size['total'] * (1024 ** 2)  # Convert to bytes
            target_size = self.max_cache_size_gb * (1024 ** 3) * 0.8  # 80% of limit
            
            for file_info in all_files:
                if current_size <= target_size:
                    break
                
                file_info['path'].unlink()
                current_size -= file_info['size']
                print(f"Removed {file_info['path'].name} to enforce cache limit")
    
    def _get_hash(self, text: str) -> str:
        """Get MD5 hash of text"""
        return hashlib.md5(text.encode()).hexdigest()
    
    def _get_generation_key(self, prompt: str, generation_type: str) -> str:
        """Get unique key for generation cache"""
        combined = f"{generation_type}:{prompt}"
        return self._get_hash(combined)
    
    def _is_cache_valid(self, cache_path: Path) -> bool:
        """Check if cache file is still valid"""
        if not cache_path.exists():
            return False
        
        file_age = datetime.now() - datetime.fromtimestamp(cache_path.stat().st_mtime)
        return file_age < timedelta(days=self.cache_expiry_days)
    
    def _load_cache_stats(self) -> Dict[str, Any]:
        """Load cache statistics"""
        stats_file = self.cache_dir / "cache_stats.json"
        
        if stats_file.exists():
            with open(stats_file, 'r') as f:
                return json.load(f)
        
        return {
            'total_hits': 0,
            'total_misses': 0,
            'last_cleanup': datetime.now().isoformat(),
            'entries': {}
        }
    
    def _update_cache_stats(self, cache_type: str, key: str, size: int):
        """Update cache statistics"""
        self.cache_stats['entries'][key] = {
            'type': cache_type,
            'size': size,
            'timestamp': datetime.now().isoformat()
        }
        
        # Save stats
        stats_file = self.cache_dir / "cache_stats.json"
        with open(stats_file, 'w') as f:
            json.dump(self.cache_stats, f, indent=2)
    
    def get_cache_info(self) -> Dict[str, Any]:
        """Get cache information and statistics"""
        sizes = self.get_cache_size()
        
        return {
            'sizes': sizes,
            'stats': self.cache_stats,
            'memory_cache_items': len(self.memory_cache),
            'cache_dir': str(self.cache_dir),
            'max_size_gb': self.max_cache_size_gb,
            'expiry_days': self.cache_expiry_days
        }