Spaces:
Paused
Paused
File size: 19,567 Bytes
fe24641 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import numpy as np
import trimesh
from typing import Union, Dict, List, Tuple, Optional
import tempfile
from pathlib import Path
class UniRigProcessor:
"""Automatic rigging for 3D models using simplified UniRig approach"""
def __init__(self, device: str = "cuda"):
self.device = device
self.model = None
# Rigging parameters
self.bone_detection_threshold = 0.1
self.max_bones = 20
self.min_bones = 5
# Animation presets for monsters
self.animation_presets = {
'idle': self._create_idle_animation,
'walk': self._create_walk_animation,
'attack': self._create_attack_animation,
'happy': self._create_happy_animation
}
def load_model(self):
"""Load rigging model (placeholder for actual implementation)"""
# In production, this would load the actual UniRig model
# For now, we'll use procedural rigging
self.model = "procedural"
def rig_mesh(self,
mesh: Union[str, trimesh.Trimesh],
mesh_type: str = "monster") -> Dict[str, any]:
"""Add rigging to a 3D mesh"""
try:
# Load mesh if path provided
if isinstance(mesh, str):
mesh = trimesh.load(mesh)
# Ensure model is loaded
if self.model is None:
self.load_model()
# Analyze mesh structure
mesh_analysis = self._analyze_mesh(mesh)
# Generate skeleton
skeleton = self._generate_skeleton(mesh, mesh_analysis)
# Compute bone weights
weights = self._compute_bone_weights(mesh, skeleton)
# Create rigged model
rigged_model = {
'mesh': mesh,
'skeleton': skeleton,
'weights': weights,
'animations': self._create_default_animations(skeleton),
'metadata': {
'mesh_type': mesh_type,
'bone_count': len(skeleton['bones']),
'vertex_count': len(mesh.vertices)
}
}
# Save rigged model
output_path = self._save_rigged_model(rigged_model)
return output_path
except Exception as e:
print(f"Rigging error: {e}")
# Return original mesh if rigging fails
return self._save_mesh_without_rigging(mesh)
def _analyze_mesh(self, mesh: trimesh.Trimesh) -> Dict[str, any]:
"""Analyze mesh structure for rigging"""
# Get mesh bounds and center
bounds = mesh.bounds
center = mesh.centroid
# Analyze mesh topology
analysis = {
'bounds': bounds,
'center': center,
'height': bounds[1][2] - bounds[0][2],
'width': bounds[1][0] - bounds[0][0],
'depth': bounds[1][1] - bounds[0][1],
'is_symmetric': self._check_symmetry(mesh),
'detected_limbs': self._detect_limbs(mesh),
'mesh_type': self._classify_mesh_type(mesh)
}
return analysis
def _check_symmetry(self, mesh: trimesh.Trimesh) -> bool:
"""Check if mesh is roughly symmetric"""
# Simple check: compare left and right halves
vertices = mesh.vertices
center_x = mesh.centroid[0]
left_verts = vertices[vertices[:, 0] < center_x]
right_verts = vertices[vertices[:, 0] > center_x]
# Check if similar number of vertices on each side
ratio = len(left_verts) / (len(right_verts) + 1)
return 0.8 < ratio < 1.2
def _detect_limbs(self, mesh: trimesh.Trimesh) -> List[Dict]:
"""Detect potential limbs in the mesh"""
# Simplified limb detection using vertex clustering
from sklearn.cluster import DBSCAN
limbs = []
try:
# Cluster vertices to find distinct parts
clustering = DBSCAN(eps=0.1, min_samples=10).fit(mesh.vertices)
# Analyze each cluster
for label in set(clustering.labels_):
if label == -1: # Noise
continue
cluster_verts = mesh.vertices[clustering.labels_ == label]
# Check if cluster could be a limb
cluster_bounds = np.array([cluster_verts.min(axis=0), cluster_verts.max(axis=0)])
dimensions = cluster_bounds[1] - cluster_bounds[0]
# Limbs are typically elongated
if max(dimensions) / (min(dimensions) + 0.001) > 2:
limbs.append({
'center': cluster_verts.mean(axis=0),
'direction': dimensions,
'size': len(cluster_verts)
})
except:
# Fallback if clustering fails
pass
return limbs
def _classify_mesh_type(self, mesh: trimesh.Trimesh) -> str:
"""Classify the type of creature mesh"""
analysis = {
'height': mesh.bounds[1][2] - mesh.bounds[0][2],
'width': mesh.bounds[1][0] - mesh.bounds[0][0],
'depth': mesh.bounds[1][1] - mesh.bounds[0][1]
}
# Simple classification based on proportions
aspect_ratio = analysis['height'] / max(analysis['width'], analysis['depth'])
if aspect_ratio > 1.5:
return 'bipedal' # Tall creatures
elif aspect_ratio < 0.7:
return 'quadruped' # Wide creatures
else:
return 'hybrid' # Mixed proportions
def _generate_skeleton(self, mesh: trimesh.Trimesh, analysis: Dict) -> Dict:
"""Generate skeleton for the mesh"""
skeleton = {
'bones': [],
'hierarchy': {},
'bind_poses': []
}
# Create root bone at center
root_pos = analysis['center']
root_bone = {
'id': 0,
'name': 'root',
'position': root_pos,
'parent': -1,
'children': []
}
skeleton['bones'].append(root_bone)
# Generate bones based on mesh type
mesh_type = analysis['mesh_type']
if mesh_type == 'bipedal':
skeleton = self._generate_bipedal_skeleton(mesh, skeleton, analysis)
elif mesh_type == 'quadruped':
skeleton = self._generate_quadruped_skeleton(mesh, skeleton, analysis)
else:
skeleton = self._generate_hybrid_skeleton(mesh, skeleton, analysis)
# Build hierarchy
for bone in skeleton['bones']:
if bone['parent'] >= 0:
skeleton['bones'][bone['parent']]['children'].append(bone['id'])
return skeleton
def _generate_bipedal_skeleton(self, mesh: trimesh.Trimesh, skeleton: Dict, analysis: Dict) -> Dict:
"""Generate skeleton for bipedal creature"""
bounds = analysis['bounds']
center = analysis['center']
height = analysis['height']
# Spine bones
spine_positions = [
center + [0, 0, -height * 0.4], # Hips
center + [0, 0, 0], # Chest
center + [0, 0, height * 0.3] # Head
]
parent_id = 0
for i, pos in enumerate(spine_positions):
bone = {
'id': len(skeleton['bones']),
'name': ['hips', 'chest', 'head'][i],
'position': pos,
'parent': parent_id,
'children': []
}
skeleton['bones'].append(bone)
parent_id = bone['id']
# Add limbs
chest_id = skeleton['bones'][2]['id'] # Chest bone
hips_id = skeleton['bones'][1]['id'] # Hips bone
# Arms
arm_offset = analysis['width'] * 0.4
for side, offset in [('left', -arm_offset), ('right', arm_offset)]:
shoulder_pos = skeleton['bones'][chest_id]['position'] + [offset, 0, 0]
elbow_pos = shoulder_pos + [offset * 0.5, 0, -height * 0.2]
# Shoulder
shoulder = {
'id': len(skeleton['bones']),
'name': f'{side}_shoulder',
'position': shoulder_pos,
'parent': chest_id,
'children': []
}
skeleton['bones'].append(shoulder)
# Elbow/Hand
hand = {
'id': len(skeleton['bones']),
'name': f'{side}_hand',
'position': elbow_pos,
'parent': shoulder['id'],
'children': []
}
skeleton['bones'].append(hand)
# Legs
for side, offset in [('left', -arm_offset * 0.5), ('right', arm_offset * 0.5)]:
hip_pos = skeleton['bones'][hips_id]['position'] + [offset, 0, 0]
foot_pos = hip_pos + [0, 0, -height * 0.4]
# Leg
leg = {
'id': len(skeleton['bones']),
'name': f'{side}_leg',
'position': hip_pos,
'parent': hips_id,
'children': []
}
skeleton['bones'].append(leg)
# Foot
foot = {
'id': len(skeleton['bones']),
'name': f'{side}_foot',
'position': foot_pos,
'parent': leg['id'],
'children': []
}
skeleton['bones'].append(foot)
return skeleton
def _generate_quadruped_skeleton(self, mesh: trimesh.Trimesh, skeleton: Dict, analysis: Dict) -> Dict:
"""Generate skeleton for quadruped creature"""
# Similar to bipedal but with 4 legs and horizontal spine
center = analysis['center']
width = analysis['width']
depth = analysis['depth']
# Spine (horizontal)
spine_positions = [
center + [-width * 0.3, 0, 0], # Tail
center, # Body
center + [width * 0.3, 0, 0] # Head
]
parent_id = 0
for i, pos in enumerate(spine_positions):
bone = {
'id': len(skeleton['bones']),
'name': ['tail', 'body', 'head'][i],
'position': pos,
'parent': parent_id,
'children': []
}
skeleton['bones'].append(bone)
parent_id = bone['id'] if i < 2 else skeleton['bones'][1]['id']
# Add 4 legs
body_id = skeleton['bones'][1]['id']
for front_back, x_offset in [('front', width * 0.2), ('back', -width * 0.2)]:
for side, z_offset in [('left', -depth * 0.3), ('right', depth * 0.3)]:
leg_pos = skeleton['bones'][body_id]['position'] + [x_offset, -analysis['height'] * 0.3, z_offset]
leg = {
'id': len(skeleton['bones']),
'name': f'{front_back}_{side}_leg',
'position': leg_pos,
'parent': body_id,
'children': []
}
skeleton['bones'].append(leg)
return skeleton
def _generate_hybrid_skeleton(self, mesh: trimesh.Trimesh, skeleton: Dict, analysis: Dict) -> Dict:
"""Generate skeleton for hybrid creature"""
# Mix of bipedal and quadruped features
# For simplicity, use bipedal as base
return self._generate_bipedal_skeleton(mesh, skeleton, analysis)
def _compute_bone_weights(self, mesh: trimesh.Trimesh, skeleton: Dict) -> np.ndarray:
"""Compute bone weights for vertices"""
num_vertices = len(mesh.vertices)
num_bones = len(skeleton['bones'])
# Initialize weights matrix
weights = np.zeros((num_vertices, num_bones))
# For each vertex, compute influence from each bone
for v_idx, vertex in enumerate(mesh.vertices):
total_weight = 0
for b_idx, bone in enumerate(skeleton['bones']):
# Distance-based weight
distance = np.linalg.norm(vertex - bone['position'])
# Inverse distance weight with falloff
weight = 1.0 / (distance + 0.1)
weights[v_idx, b_idx] = weight
total_weight += weight
# Normalize weights
if total_weight > 0:
weights[v_idx] /= total_weight
# Keep only top 4 influences per vertex (standard for game engines)
top_4 = np.argsort(weights[v_idx])[-4:]
mask = np.zeros(num_bones, dtype=bool)
mask[top_4] = True
weights[v_idx, ~mask] = 0
# Re-normalize
if weights[v_idx].sum() > 0:
weights[v_idx] /= weights[v_idx].sum()
return weights
def _create_default_animations(self, skeleton: Dict) -> Dict[str, List]:
"""Create default animations for the skeleton"""
animations = {}
# Create basic animation sets
for anim_name, anim_func in self.animation_presets.items():
animations[anim_name] = anim_func(skeleton)
return animations
def _create_idle_animation(self, skeleton: Dict) -> List[Dict]:
"""Create idle animation keyframes"""
keyframes = []
# Simple breathing/bobbing motion
for t in np.linspace(0, 2 * np.pi, 30):
frame = {
'time': t / (2 * np.pi),
'bones': {}
}
# Subtle movement for each bone
for bone in skeleton['bones']:
if 'chest' in bone['name'] or 'body' in bone['name']:
# Breathing motion
offset = np.sin(t) * 0.02
frame['bones'][bone['id']] = {
'position': bone['position'] + [0, offset, 0],
'rotation': [0, 0, 0, 1] # Quaternion
}
else:
# No movement
frame['bones'][bone['id']] = {
'position': bone['position'],
'rotation': [0, 0, 0, 1]
}
keyframes.append(frame)
return keyframes
def _create_walk_animation(self, skeleton: Dict) -> List[Dict]:
"""Create walk animation keyframes"""
# Simplified walk cycle
keyframes = []
for t in np.linspace(0, 2 * np.pi, 60):
frame = {
'time': t / (2 * np.pi),
'bones': {}
}
# Animate legs with sine waves
for bone in skeleton['bones']:
if 'leg' in bone['name'] or 'foot' in bone['name']:
# Alternating leg movement
phase = 0 if 'left' in bone['name'] else np.pi
offset = np.sin(t + phase) * 0.1
frame['bones'][bone['id']] = {
'position': bone['position'] + [offset, 0, 0],
'rotation': [0, 0, 0, 1]
}
else:
frame['bones'][bone['id']] = {
'position': bone['position'],
'rotation': [0, 0, 0, 1]
}
keyframes.append(frame)
return keyframes
def _create_attack_animation(self, skeleton: Dict) -> List[Dict]:
"""Create attack animation keyframes"""
# Quick strike motion
keyframes = []
# Wind up
for t in np.linspace(0, 0.3, 10):
frame = {'time': t, 'bones': {}}
for bone in skeleton['bones']:
frame['bones'][bone['id']] = {
'position': bone['position'],
'rotation': [0, 0, 0, 1]
}
keyframes.append(frame)
# Strike
for t in np.linspace(0.3, 0.5, 5):
frame = {'time': t, 'bones': {}}
for bone in skeleton['bones']:
if 'hand' in bone['name'] or 'head' in bone['name']:
# Forward motion
offset = (t - 0.3) * 0.5
frame['bones'][bone['id']] = {
'position': bone['position'] + [offset, 0, 0],
'rotation': [0, 0, 0, 1]
}
else:
frame['bones'][bone['id']] = {
'position': bone['position'],
'rotation': [0, 0, 0, 1]
}
keyframes.append(frame)
# Return
for t in np.linspace(0.5, 1.0, 10):
frame = {'time': t, 'bones': {}}
for bone in skeleton['bones']:
frame['bones'][bone['id']] = {
'position': bone['position'],
'rotation': [0, 0, 0, 1]
}
keyframes.append(frame)
return keyframes
def _create_happy_animation(self, skeleton: Dict) -> List[Dict]:
"""Create happy/excited animation keyframes"""
# Jumping or bouncing motion
keyframes = []
for t in np.linspace(0, 2 * np.pi, 40):
frame = {
'time': t / (2 * np.pi),
'bones': {}
}
# Bouncing motion
bounce = abs(np.sin(t * 2)) * 0.1
for bone in skeleton['bones']:
frame['bones'][bone['id']] = {
'position': bone['position'] + [0, bounce, 0],
'rotation': [0, 0, 0, 1]
}
keyframes.append(frame)
return keyframes
def _save_rigged_model(self, rigged_model: Dict) -> str:
"""Save rigged model to file"""
# Create temporary file
with tempfile.NamedTemporaryFile(suffix='.glb', delete=False) as tmp:
output_path = tmp.name
# In production, this would export the rigged model with animations
# For now, just save the mesh
rigged_model['mesh'].export(output_path)
return output_path
def _save_mesh_without_rigging(self, mesh: Union[str, trimesh.Trimesh]) -> str:
"""Save mesh without rigging as fallback"""
if isinstance(mesh, str):
return mesh
with tempfile.NamedTemporaryFile(suffix='.glb', delete=False) as tmp:
output_path = tmp.name
mesh.export(output_path)
return output_path
def to(self, device: str):
"""Move model to specified device (compatibility method)"""
self.device = device |