File size: 23,762 Bytes
fe24641
 
 
 
 
 
 
 
2153bff
5ed6938
e4aa154
 
 
 
2153bff
 
 
 
fe24641
e4aa154
 
 
 
fe24641
e4aa154
fe24641
 
2153bff
 
fe24641
2153bff
 
fe24641
 
 
 
 
e4aa154
fe24641
 
e4aa154
fe24641
 
 
e4aa154
 
2153bff
e4aa154
 
 
fe24641
 
 
2153bff
 
fe24641
2153bff
fe24641
 
 
 
2153bff
 
 
fe24641
2153bff
 
 
 
 
fe24641
 
 
55083e9
fe24641
55083e9
2153bff
fe24641
55083e9
 
 
05ce3e0
fe9f0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba972b4
 
 
 
 
 
 
 
 
8b356ed
 
 
ba972b4
 
 
 
55083e9
5af079f
 
 
 
 
 
 
 
05ce3e0
48809ea
8b356ed
 
 
48809ea
 
55083e9
 
8b356ed
fe9f0b9
55083e9
8b356ed
55083e9
 
 
fe9f0b9
 
55083e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ce3e0
fe24641
55083e9
 
 
fe24641
 
 
 
 
e4aa154
fe24641
2153bff
 
 
 
 
fe24641
 
2153bff
fe24641
2153bff
fe24641
2153bff
 
fe24641
 
2153bff
fe24641
2153bff
fe24641
 
2153bff
fe24641
e4aa154
 
 
 
 
fe24641
5ed6938
fe24641
e4aa154
 
 
 
 
 
 
 
fe24641
9094d85
5ed6938
e4aa154
5ed6938
fe24641
 
2153bff
 
 
fe24641
 
e4aa154
55083e9
e4aa154
 
 
 
 
 
 
55083e9
e4aa154
 
55083e9
 
 
 
 
 
e4aa154
55083e9
 
 
 
 
 
 
 
e4aa154
 
55083e9
e4aa154
55083e9
 
 
 
 
e4aa154
 
 
 
55083e9
e4aa154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c95a6a2
e4aa154
c95a6a2
 
e4aa154
c95a6a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4aa154
 
 
 
c95a6a2
 
 
 
 
 
 
 
e4aa154
 
 
 
f5b9919
e4aa154
 
 
 
 
f5b9919
 
e4aa154
 
 
 
 
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4aa154
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed6938
e4aa154
5ed6938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe24641
 
 
 
 
 
 
5ed6938
fe24641
5ed6938
fe24641
 
 
e4aa154
 
5ed6938
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import torch
import numpy as np
from PIL import Image
import trimesh
import tempfile
from typing import Union, Optional, Dict, Any
from pathlib import Path
import os
import logging
import random
import time
import threading
from huggingface_hub import snapshot_download
import shutil

# Set up detailed logging for 3D generation
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class TimeoutError(Exception):
    """Custom timeout exception"""
    pass

class Hunyuan3DGenerator:
    """3D model generation using Hunyuan3D-2.1 directly"""
    
    def __init__(self, device: str = "cuda"):
        logger.info(f"πŸ”§ Initializing Hunyuan3DGenerator with device: {device}")
        
        self.device = device if torch.cuda.is_available() else "cpu"
        logger.info(f"πŸ”§ Final device selection: {self.device}")
        
        self.model = None
        self.preprocessor = None
        
        # Model configuration
        self.model_id = "tencent/Hunyuan3D-2.1"
        self.model_path = None
        
        # Generation parameters
        self.num_inference_steps = 30  # Reduced for faster generation
        self.guidance_scale = 7.5
        self.resolution = 256  # 3D resolution
        
        # Timeout configuration
        self.generation_timeout = 180  # 3 minutes timeout for local generation
        
        # Use full model since we have enough RAM
        logger.info(f"πŸ”§ Using full Hunyuan3D-2.1 model")
        logger.info(f"⏱️ Generation timeout set to: {self.generation_timeout} seconds")
    
    def _check_vram(self) -> bool:
        """Check if we have enough VRAM for full model"""
        logger.info("πŸ” Checking VRAM availability...")
        
        if not torch.cuda.is_available():
            logger.info("❌ CUDA not available")
            return False
        
        try:
            vram = torch.cuda.get_device_properties(0).total_memory
            vram_gb = vram / (1024 * 1024 * 1024)
            logger.info(f"πŸ” Available VRAM: {vram_gb:.2f} GB")
            
            # Need at least 12GB for full model
            has_enough = vram > 12 * 1024 * 1024 * 1024
            logger.info(f"πŸ” Has enough VRAM (>12GB): {has_enough}")
            return has_enough
        except Exception as e:
            logger.error(f"❌ Error checking VRAM: {e}")
            return False
    
    def load_model(self):
        """Load Hunyuan3D model and run necessary setup"""
        if self.model is None:
            logger.info("πŸš€ Starting Hunyuan3D model loading and setup...")
            
            try:
                import subprocess
                import sys
                import os

                def run_setup_command(command, cwd):
                    logger.info(f"Running command: {' '.join(command)} in {cwd}")
                    try:
                        process = subprocess.run(
                            command, 
                            check=True, 
                            capture_output=True, 
                            text=True, 
                            cwd=cwd
                        )
                        logger.info(f"βœ… Command successful.")
                        if process.stdout:
                            logger.info(f"STDOUT:\n{process.stdout}")
                        if process.stderr:
                            logger.warning(f"STDERR:\n{process.stderr}")
                    except subprocess.CalledProcessError as e:
                        logger.error(f"❌ Command failed with exit code {e.returncode}")
                        logger.error(f"STDOUT:\n{e.stdout}")
                        logger.error(f"STDERR:\n{e.stderr}")
                        raise  # Re-raise the exception to halt execution and see the error

                # Download model repository if not already present
                logger.info(f"πŸ“₯ Downloading Hunyuan3D repository from {self.model_id}...")
                self.model_path = snapshot_download(
                    repo_id=self.model_id,
                    repo_type="space",
                    cache_dir="./models/hunyuan3d_cache"
                )
                logger.info(f"βœ… Model repository downloaded to: {self.model_path}")
                
                # # List the contents of the downloaded directory for debugging
                # logger.info(f"πŸ” Listing contents of {self.model_path}...")
                # run_setup_command(['ls', '-R'], cwd=self.model_path)

                # --- Installation and Compilation ---
                logger.info("πŸ”§ Running Hunyuan3D setup scripts with detailed logging...")

                # 1. Install requirements from the model's specific requirements file
                # requirements_path = os.path.join(self.model_path, 'requirements_hunyuan3d.txt')
                # if os.path.exists(requirements_path):
                #     pip_command = [
                #         sys.executable, '-m', 'pip', 'install', '-r', requirements_path,
                #         '--extra-index-url', 'https://mirrors.cloud.tencent.com/pypi/simple/',
                #         '--extra-index-url', 'https://mirrors.aliyun.com/pypi/simple'
                #     ]
                #     run_setup_command(pip_command, cwd=self.model_path)

                # 2. Install custom rasterizer dependencies (torch)
                # logger.info("Installing torch, torchvision, torchaudio...")
                # pip_command_torch = [sys.executable, '-m', 'pip', 'install', 'torch==2.5.1', 'torchvision==0.20.1', 'torchaudio==2.5.1', '--index-url', 'https://download.pytorch.org/whl/cu124']
                # run_setup_command(pip_command_torch, cwd=self.model_path)

                # 3. Install custom rasterizer
                rasterizer_path = os.path.join(self.model_path, 'hy3dpaint', 'packages', 'custom_rasterizer')
                if os.path.exists(rasterizer_path):
                    pip_command_rasterizer = [sys.executable, '-m', 'pip', 'install', '--no-build-isolation', '-e', '.']
                    run_setup_command(pip_command_rasterizer, cwd=rasterizer_path)

                # 4. Compile mesh painter
                renderer_path = os.path.join(self.model_path, 'hy3dpaint', 'DifferentiableRenderer')
                compile_script_path = os.path.join(renderer_path, 'compile_mesh_painter.sh')
                if os.path.exists(compile_script_path):
                    bash_command = ['bash', compile_script_path]
                    run_setup_command(bash_command, cwd=renderer_path)
                
                logger.info("βœ… Hunyuan3D setup completed successfully.")

                # --- Pipeline Initialization ---
                logger.info("✈️ Initializing Hunyuan3D pipelines...")
                
                # Add subdirectories to Python path
                sys.path.insert(0, os.path.join(self.model_path, 'hy3dshape'))
                sys.path.insert(0, os.path.join(self.model_path, 'hy3dpaint'))
                
                # Import the correct pipelines
                from hy3dshape.pipelines import Hunyuan3DDiTFlowMatchingPipeline
                from textureGenPipeline import Hunyuan3DPaintPipeline, Hunyuan3DPaintConfig

                # Instantiate pipelines
                logger.info("Instantiating shape pipeline...")
                self.shape_pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
                    self.model_path, torch_dtype=torch.bfloat16
                ).to(self.device)
                
                logger.info("Instantiating paint pipeline...")
                paint_config = Hunyuan3DPaintConfig(max_num_view=8, resolution=1024, pbr_optimization=True)
                self.paint_pipeline = Hunyuan3DPaintPipeline(paint_config)

                self.model = "direct_model"
                logger.info("βœ… Hunyuan3D pipelines loaded successfully.")

            except Exception as e:
                logger.error(f"❌ Failed to set up Hunyuan3D pipeline: {e}", exc_info=True)
                logger.warning("πŸ”„ Falling back to simplified 3D generation...")
                self.model = "simplified"
    
    def image_to_3d(self, 
                   image: Union[str, Image.Image, np.ndarray],
                   remove_background: bool = True,
                   texture_resolution: int = 1024) -> Union[str, trimesh.Trimesh]:
        """Convert 2D image to 3D model using local Hunyuan3D"""
        
        logger.info("🎯 Starting image-to-3D conversion process...")
        logger.info(f"🎯 Input type: {type(image)}")
        logger.info(f"🎯 Remove background: {remove_background}")
        logger.info(f"🎯 Texture resolution: {texture_resolution}")
        
        try:
            # Load model if needed
            logger.info("πŸ” Checking if model needs loading...")
            if self.model is None:
                logger.info("πŸ“¦ Model not loaded, initiating loading...")
                self.load_model()
            else:
                logger.info("βœ… Model already loaded")
            
            # Prepare image
            logger.info("πŸ–ΌοΈ Preparing input image...")
            if isinstance(image, str):
                logger.info(f"πŸ–ΌοΈ Loading image from path: {image}")
                image = Image.open(image)
            elif isinstance(image, np.ndarray):
                logger.info("πŸ–ΌοΈ Converting numpy array to PIL Image")
                image = Image.fromarray(image)
            
            # Ensure image is PIL Image
            if not isinstance(image, Image.Image):
                logger.error("❌ Invalid image type")
                raise ValueError("Image must be PIL Image, numpy array, or path string")
            
            logger.info(f"πŸ–ΌοΈ Image mode: {image.mode}, size: {image.size}")
            
            # Process based on model type
            if self.model == "direct_model":
                logger.info("🌐 Using direct Hunyuan3D model for 3D generation...")
                return self._generate_with_direct_model(image, remove_background, texture_resolution)
            
            elif self.model == "simplified":
                logger.info("πŸ”„ Using simplified Hunyuan3D generation...")
                return self._generate_simplified_3d(image)
            
            else:
                # Fallback to simple 3D generation
                logger.info("πŸ”„ Using fallback 3D generation...")
                return self._generate_fallback_3d(image)
            
        except Exception as e:
            logger.error(f"❌ 3D generation error: {e}")
            logger.error(f"❌ Error type: {type(e).__name__}")
            logger.info("πŸ”„ Falling back to simple 3D generation...")
            return self._generate_fallback_3d(image)
    
    def _generate_with_direct_model(self, image: Image.Image, remove_background: bool, texture_resolution: int) -> str:
        """Generate 3D model using the official Hunyuan3D pipelines"""
        
        try:
            # Remove background if requested
            if remove_background:
                logger.info("🎭 Removing background...")
                image = self._remove_background(image)
            
            # Save image to a temporary file, as pipelines expect a path
            temp_image_path = self._save_temp_image(image)
            
            # 1. Generate the untextured mesh
            logger.info("πŸ”² Generating 3D shape with Hunyuan3DDiTFlowMatchingPipeline...")
            # The pipeline returns a list of meshes, we take the first one
            mesh_untextured_path = self.shape_pipeline(
                image=temp_image_path,
                num_inference_steps=self.num_inference_steps,
                guidance_scale=self.guidance_scale,
                seed=random.randint(1, 10000)
            )[0]
            logger.info(f"βœ… Untextured mesh saved to: {mesh_untextured_path}")

            # 2. Generate the texture for the mesh
            logger.info("🎨 Generating texture with Hunyuan3DPaintPipeline...")
            mesh_textured_path = self.paint_pipeline(
                mesh_path=mesh_untextured_path, 
                image_path=temp_image_path,
                guidance_scale=self.guidance_scale,
                seed=random.randint(1, 10000)
            )
            logger.info(f"βœ… Textured mesh saved to: {mesh_textured_path}")

            # 3. Save the final output to a consistent location
            output_path = self._save_output_mesh(mesh_textured_path)
            logger.info(f"βœ… 3D model generation successful. Final model at: {output_path}")
            
            return output_path
            
        except Exception as e:
            logger.error(f"❌ Direct model generation failed: {e}", exc_info=True)
            raise
    
    def _generate_simplified_3d(self, image: Image.Image) -> str:
        """Generate 3D using simplified approach with PyTorch operations"""
        
        logger.info("πŸ”§ Using simplified 3D generation with PyTorch...")
        
        try:
            # Convert image to tensor
            import torchvision.transforms as transforms
            
            transform = transforms.Compose([
                transforms.Resize((256, 256)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
            ])
            
            image_tensor = transform(image).unsqueeze(0).to(self.device)
            
            # Create a depth map from the image
            logger.info("πŸ“ Generating depth map...")
            
            # Simple depth estimation based on image brightness
            gray_image = image.convert('L')
            depth_array = np.array(gray_image.resize((64, 64))) / 255.0
            
            # Apply some smoothing and scaling
            from scipy.ndimage import gaussian_filter
            depth_array = gaussian_filter(depth_array, sigma=2)
            depth_array = depth_array * 0.3 + 0.1  # Scale depth
            
            # Generate mesh from depth map
            logger.info("πŸ”² Creating mesh from depth map...")
            mesh = self._depthmap_to_mesh(depth_array, image)
            
            # Save mesh
            output_path = self._save_mesh(mesh)
            logger.info(f"βœ… Simplified 3D model generated: {output_path}")
            
            return output_path
            
        except Exception as e:
            logger.error(f"❌ Simplified generation failed: {e}")
            return self._generate_fallback_3d(image)
    
    def _depthmap_to_mesh(self, depth_map: np.ndarray, texture_image: Image.Image) -> trimesh.Trimesh:
        """Convert depth map to textured 3D mesh"""
        
        h, w = depth_map.shape
        
        # Create vertices with texture coordinates
        vertices = []
        faces = []
        vertex_colors = []
        
        # Resize texture to match depth map
        texture_resized = texture_image.resize((w, h))
        texture_array = np.array(texture_resized)
        
        # Create vertex grid with colors
        for i in range(h):
            for j in range(w):
                x = (j - w/2) / w * 2
                y = (i - h/2) / h * 2
                z = depth_map[i, j]
                vertices.append([x, y, z])
                
                # Add vertex color from texture
                if len(texture_array.shape) == 3:
                    color = texture_array[i, j, :3]
                else:
                    color = [texture_array[i, j]] * 3
                vertex_colors.append(color)
        
        # Create faces (two triangles per grid square)
        for i in range(h-1):
            for j in range(w-1):
                v1 = i * w + j
                v2 = v1 + 1
                v3 = v1 + w
                v4 = v3 + 1
                
                faces.append([v1, v2, v3])
                faces.append([v2, v4, v3])
        
        vertices = np.array(vertices)
        faces = np.array(faces)
        vertex_colors = np.array(vertex_colors, dtype=np.uint8)
        
        # Create mesh with vertex colors
        mesh = trimesh.Trimesh(
            vertices=vertices, 
            faces=faces,
            vertex_colors=vertex_colors
        )
        
        # Apply smoothing
        mesh = mesh.smoothed()
        
        # Add a base to make it more stable
        base_vertices, base_faces = self._create_base(vertices, w, h)
        base_mesh = trimesh.Trimesh(vertices=base_vertices, faces=base_faces)
        
        # Combine mesh with base
        mesh = trimesh.util.concatenate([mesh, base_mesh])
        
        return mesh
    
    def _create_base(self, vertices: np.ndarray, w: int, h: int) -> tuple:
        """Create a base for the mesh"""
        
        base_z = vertices[:, 2].min() - 0.1
        base_vertices = []
        base_faces = []
        
        # Get boundary vertices - fix the indexing
        boundary_indices = []
        
        # Top edge (excluding corners)
        for j in range(1, w-1):
            boundary_indices.append(j)
        
        # Right edge (including top-right corner)
        for i in range(h):
            boundary_indices.append(i * w + w - 1)
        
        # Bottom edge (excluding bottom-right corner, going right to left)
        for j in range(w-2, 0, -1):
            boundary_indices.append((h-1) * w + j)
        
        # Left edge (including bottom-left corner, going bottom to top)
        for i in range(h-1, -1, -1):
            boundary_indices.append(i * w)
        
        # Remove duplicate indices (first and last should not be the same)
        if boundary_indices and boundary_indices[0] == boundary_indices[-1]:
            boundary_indices = boundary_indices[:-1]
        
        # Create base vertices
        start_idx = len(vertices)
        for idx in boundary_indices:
            if idx < len(vertices):  # Safety check
                v = vertices[idx].copy()
                v[2] = base_z
                base_vertices.append(v)
        
        if not base_vertices:
            # If no base vertices were created, return empty arrays
            return np.array([]), np.array([])
        
        # Create center vertex
        center = np.mean(base_vertices, axis=0)
        base_vertices.append(center)
        center_idx = len(base_vertices) - 1
        
        # Create base faces
        for i in range(len(boundary_indices)):
            next_i = (i + 1) % len(boundary_indices)
            base_faces.append([
                i,
                next_i,
                center_idx
            ])
        
        return np.array(base_vertices), np.array(base_faces)
    
    def _remove_background(self, image: Image.Image) -> Image.Image:
        """Remove background from image"""
        try:
            # Try using rembg if available
            from rembg import remove
            return remove(image)
        except:
            # Fallback: simple background removal
            # Convert to RGBA
            image = image.convert("RGBA")
            
            # Simple white background removal
            datas = image.getdata()
            new_data = []
            
            for item in datas:
                # Remove white-ish backgrounds
                if item[0] > 230 and item[1] > 230 and item[2] > 230:
                    new_data.append((255, 255, 255, 0))
                else:
                    new_data.append(item)
            
            image.putdata(new_data)
            return image
    
    def _generate_fallback_3d(self, image: Union[Image.Image, np.ndarray]) -> str:
        """Generate fallback 3D model when main model fails"""
        
        # Create a simple 3D representation based on image
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif isinstance(image, str):
            image = Image.open(image)
        
        # Analyze image for basic shape
        image_array = np.array(image.resize((64, 64)))
        
        # Create height map from image brightness
        gray = np.mean(image_array, axis=2) if len(image_array.shape) == 3 else image_array
        height_map = gray / 255.0
        
        # Create mesh from height map
        mesh = self._heightmap_to_mesh(height_map)
        
        # Save and return path
        return self._save_mesh(mesh)
    
    def _heightmap_to_mesh(self, heightmap: np.ndarray) -> trimesh.Trimesh:
        """Convert heightmap to 3D mesh"""
        h, w = heightmap.shape
        
        # Create vertices
        vertices = []
        faces = []
        
        # Create vertex grid
        for i in range(h):
            for j in range(w):
                x = (j - w/2) / w * 2
                y = (i - h/2) / h * 2
                z = heightmap[i, j] * 0.5
                vertices.append([x, y, z])
        
        # Create faces
        for i in range(h-1):
            for j in range(w-1):
                # Two triangles per grid square
                v1 = i * w + j
                v2 = v1 + 1
                v3 = v1 + w
                v4 = v3 + 1
                
                faces.append([v1, v2, v3])
                faces.append([v2, v4, v3])
        
        vertices = np.array(vertices)
        faces = np.array(faces)
        
        # Create mesh
        mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
        
        # Apply smoothing
        mesh = mesh.smoothed()
        
        return mesh
    
    def _save_mesh(self, mesh: trimesh.Trimesh) -> str:
        """Save mesh to file"""
        # Create temporary file
        with tempfile.NamedTemporaryFile(suffix='.glb', delete=False) as tmp:
            mesh_path = tmp.name
        
        # Export mesh
        mesh.export(mesh_path)
        
        return mesh_path
    
    def _save_temp_image(self, image: Image.Image) -> str:
        """Save PIL image to temporary file"""
        with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
            image_path = tmp.name
        
        # Save image 
        image.save(image_path, 'PNG')
        logger.info(f"πŸ’Ύ Saved temp image to: {image_path}")
        
        return image_path
    
    def _save_output_mesh(self, source_mesh_path: str) -> str:
        """Copy generated mesh to our output location"""
        
        # Create output directory if it doesn't exist
        output_dir = "/tmp/hunyuan3d_output"
        os.makedirs(output_dir, exist_ok=True)
        
        # Generate unique filename
        timestamp = tempfile.mktemp().split('/')[-1]
        output_filename = f"hunyuan3d_mesh_{timestamp}.glb"
        output_path = os.path.join(output_dir, output_filename)
        
        # Copy the file
        shutil.copy2(source_mesh_path, output_path)
        logger.info(f"πŸ“ Copied mesh from {source_mesh_path} to {output_path}")
        
        return output_path
    
    def text_to_3d(self, text_prompt: str) -> str:
        """Generate 3D model from text description"""
        # First generate image, then convert to 3D
        # This would require image generator integration
        raise NotImplementedError("Text to 3D requires image generation first")
    
    def to(self, device: str):
        """Update device preference"""
        self.device = device
        logger.info(f"πŸ”§ Device preference updated to: {device}")
    
    def __del__(self):
        """Cleanup when object is destroyed"""
        if hasattr(self, 'model') and self.model not in [None, "fallback_mode", "simplified"]:
            del self.model
        if torch.cuda.is_available():
            torch.cuda.empty_cache()