Spaces:
Sleeping
Sleeping
AI legal assistant for disabilities
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
+
import datetime
|
4 |
+
import torch
|
5 |
+
from trl import PPOTrainer, PPOConfig, AutoModelForSeq2SeqLMWithValueHead, create_reference_model, set_seed
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# Load FLAN-T5 for Legal Q&A
|
9 |
+
model_name = "google/flan-t5-small"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForSeq2SeqLMWithValueHead.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Create a reference model for PPO
|
14 |
+
ref_model = create_reference_model(model)
|
15 |
+
|
16 |
+
# PPO Configuration
|
17 |
+
config = PPOConfig(
|
18 |
+
batch_size=1,
|
19 |
+
learning_rate=1e-5,
|
20 |
+
mini_batch_size=1,
|
21 |
+
ppo_epochs=1 # Minimal epochs
|
22 |
+
)
|
23 |
+
|
24 |
+
# Create PPO Trainer
|
25 |
+
ppo_trainer = PPOTrainer(
|
26 |
+
config=config,
|
27 |
+
model=model,
|
28 |
+
ref_model=ref_model,
|
29 |
+
tokenizer=tokenizer
|
30 |
+
)
|
31 |
+
|
32 |
+
# Translation Models (English ↔ Hindi)
|
33 |
+
translator_en_hi = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
34 |
+
tokenizer_en_hi = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
35 |
+
|
36 |
+
translator_hi_en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-hi-en")
|
37 |
+
tokenizer_hi_en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-hi-en")
|
38 |
+
|
39 |
+
# Translation Function
|
40 |
+
def translate(text, src_lang, tgt_lang):
|
41 |
+
if src_lang == "English" and tgt_lang == "Hindi":
|
42 |
+
inputs = tokenizer_en_hi(text, return_tensors="pt", padding=True, truncation=True)
|
43 |
+
outputs = translator_en_hi.generate(**inputs)
|
44 |
+
return tokenizer_en_hi.decode(outputs[0], skip_special_tokens=True)
|
45 |
+
elif src_lang == "Hindi" and tgt_lang == "English":
|
46 |
+
inputs = tokenizer_hi_en(text, return_tensors="pt", padding=True, truncation=True)
|
47 |
+
outputs = translator_hi_en.generate(**inputs)
|
48 |
+
return tokenizer_hi_en.decode(outputs[0], skip_special_tokens=True)
|
49 |
+
else:
|
50 |
+
return "Translation for this pair not supported yet!"
|
51 |
+
|
52 |
+
# Generate Complaint Template
|
53 |
+
def generate_complaint(issue):
|
54 |
+
date = datetime.datetime.now().strftime("%d-%m-%Y")
|
55 |
+
template = f"""
|
56 |
+
[Your Name]
|
57 |
+
[Your Address]
|
58 |
+
{date}
|
59 |
+
|
60 |
+
To Whom It May Concern,
|
61 |
+
|
62 |
+
**Subject: Complaint Regarding {issue}**
|
63 |
+
|
64 |
+
I am writing to formally lodge a complaint regarding {issue}. The incident occurred on [Date/Location]. The specific details are as follows:
|
65 |
+
|
66 |
+
- Issue: {issue}
|
67 |
+
- Evidence: [Provide Evidence]
|
68 |
+
|
69 |
+
I kindly request you to take appropriate action as per the legal guidelines.
|
70 |
+
|
71 |
+
Yours sincerely,
|
72 |
+
[Your Name]
|
73 |
+
"""
|
74 |
+
return template.strip()
|
75 |
+
|
76 |
+
# Handle Legal Q&A with PPO
|
77 |
+
def handle_legal_query(query, language):
|
78 |
+
if language != "English":
|
79 |
+
query = translate(query, language, "English")
|
80 |
+
|
81 |
+
# Tokenize input
|
82 |
+
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
|
83 |
+
|
84 |
+
# Generate Response
|
85 |
+
outputs = model.generate(**inputs, max_length=150)
|
86 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
87 |
+
|
88 |
+
# Reward Signal for PPO (basic reward)
|
89 |
+
reward = torch.tensor([1.0]) if "legal" in response.lower() else torch.tensor([-1.0])
|
90 |
+
|
91 |
+
# PPO Step (Reinforcement Learning)
|
92 |
+
ppo_trainer.step([query], [outputs], [reward])
|
93 |
+
|
94 |
+
if language != "English":
|
95 |
+
response = translate(response, "English", language)
|
96 |
+
|
97 |
+
return response
|
98 |
+
|
99 |
+
# Define Gradio Interface
|
100 |
+
with gr.Blocks(css=".container {width: 100%; max-width: 600px;}") as app:
|
101 |
+
gr.Markdown("# AI Legal Assistant\n### Ask legal questions and generate complaints")
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
query = gr.Textbox(label="Ask your legal question", placeholder="What are my rights as a disabled person?")
|
105 |
+
lang = gr.Dropdown(["English", "Hindi"], label="Language", value="English")
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
submit_btn = gr.Button("Get Legal Advice")
|
109 |
+
output = gr.Textbox(label="Legal Advice", placeholder="Legal advice will appear here")
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
issue = gr.Textbox(label="Describe your issue", placeholder="Facing discrimination at work...")
|
113 |
+
generate_btn = gr.Button("Generate Complaint")
|
114 |
+
complaint_output = gr.Textbox(label="Generated Complaint", placeholder="Complaint template will appear here")
|
115 |
+
|
116 |
+
submit_btn.click(handle_legal_query, inputs=[query, lang], outputs=output)
|
117 |
+
generate_btn.click(generate_complaint, inputs=issue, outputs=complaint_output)
|
118 |
+
|
119 |
+
# Launch the app on Hugging Face free tier
|
120 |
+
app.launch()
|