Spaces:
Sleeping
Sleeping
Use SCST RLAI and check
Browse files
app.py
CHANGED
@@ -1,36 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import datetime
|
|
|
|
|
4 |
|
5 |
# Load FLAN-T5 for Legal Q&A
|
6 |
model_name = "google/flan-t5-small"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
|
10 |
-
# Translation Models (
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
def load_translation_model(src_lang, tgt_lang):
|
17 |
-
pair = f"{src_lang[:2]}-{tgt_lang[:2]}"
|
18 |
-
if pair in translation_models:
|
19 |
-
model_name, tokenizer_name = translation_models[pair]
|
20 |
-
trans_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
21 |
-
trans_tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
22 |
-
return trans_model, trans_tokenizer
|
23 |
-
return None, None
|
24 |
|
25 |
# Translation Function
|
26 |
def translate(text, src_lang, tgt_lang):
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return "Translation for this pair not supported yet!"
|
30 |
-
|
31 |
-
inputs = trans_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
32 |
-
outputs = trans_model.generate(**inputs, max_length=256)
|
33 |
-
return trans_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
|
35 |
# Generate Complaint Template
|
36 |
def generate_complaint(issue):
|
@@ -50,31 +47,65 @@ Yours sincerely,
|
|
50 |
"""
|
51 |
return template.strip()
|
52 |
|
53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def handle_legal_query(query, language):
|
55 |
if language != "English":
|
56 |
query = translate(query, language, "English")
|
57 |
|
58 |
-
|
59 |
-
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True, max_length=256)
|
60 |
-
|
61 |
-
# Logits processing using Top-K sampling
|
62 |
-
logits_processor = LogitsProcessorList([
|
63 |
-
TopKLogitsWarper(50) # Use Top-K only
|
64 |
-
])
|
65 |
|
66 |
-
# Generate
|
67 |
-
outputs = model.generate(**inputs, max_length=150
|
68 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
if language != "English":
|
71 |
response = translate(response, "English", language)
|
72 |
|
73 |
return response
|
74 |
|
75 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
with gr.Blocks(css=".container {width: 100%; max-width: 600px;}") as app:
|
77 |
-
gr.Markdown("# AI Legal Assistant
|
|
|
78 |
|
79 |
with gr.Row():
|
80 |
query = gr.Textbox(label="Ask your legal question", placeholder="What are my rights as a disabled person?")
|
@@ -89,8 +120,12 @@ with gr.Blocks(css=".container {width: 100%; max-width: 600px;}") as app:
|
|
89 |
generate_btn = gr.Button("Generate Complaint")
|
90 |
complaint_output = gr.Textbox(label="Generated Complaint", placeholder="Complaint template will appear here")
|
91 |
|
|
|
|
|
|
|
|
|
92 |
submit_btn.click(handle_legal_query, inputs=[query, lang], outputs=output)
|
93 |
generate_btn.click(generate_complaint, inputs=issue, outputs=complaint_output)
|
|
|
94 |
|
95 |
-
# Launch the app
|
96 |
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import datetime
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
|
7 |
# Load FLAN-T5 for Legal Q&A
|
8 |
model_name = "google/flan-t5-small"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
|
12 |
+
# Translation Models (English <-> Hindi)
|
13 |
+
translator_en_hi = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
14 |
+
tokenizer_en_hi = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
15 |
+
|
16 |
+
translator_hi_en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-hi-en")
|
17 |
+
tokenizer_hi_en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-hi-en")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Translation Function
|
20 |
def translate(text, src_lang, tgt_lang):
|
21 |
+
if src_lang == "English" and tgt_lang == "Hindi":
|
22 |
+
inputs = tokenizer_en_hi(text, return_tensors="pt", padding=True, truncation=True)
|
23 |
+
outputs = translator_en_hi.generate(**inputs)
|
24 |
+
return tokenizer_en_hi.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
elif src_lang == "Hindi" and tgt_lang == "English":
|
26 |
+
inputs = tokenizer_hi_en(text, return_tensors="pt", padding=True, truncation=True)
|
27 |
+
outputs = translator_hi_en.generate(**inputs)
|
28 |
+
return tokenizer_hi_en.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
else:
|
30 |
return "Translation for this pair not supported yet!"
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Generate Complaint Template
|
33 |
def generate_complaint(issue):
|
|
|
47 |
"""
|
48 |
return template.strip()
|
49 |
|
50 |
+
# Self-Critical Sequence Training (SCST) for RL
|
51 |
+
def compute_loss(logits, labels):
|
52 |
+
log_probs = F.log_softmax(logits, dim=-1)
|
53 |
+
gathered_log_probs = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)).squeeze(-1)
|
54 |
+
loss = -gathered_log_probs.mean()
|
55 |
+
return loss
|
56 |
+
|
57 |
def handle_legal_query(query, language):
|
58 |
if language != "English":
|
59 |
query = translate(query, language, "English")
|
60 |
|
61 |
+
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Generate output
|
64 |
+
outputs = model.generate(**inputs, max_length=150)
|
65 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
|
67 |
+
# Simple reward function (reward if response mentions legal terms)
|
68 |
+
reward = 1.0 if "law" in response.lower() or "legal" in response.lower() else -1.0
|
69 |
+
|
70 |
+
# Compute SCST Loss
|
71 |
+
labels = inputs['input_ids']
|
72 |
+
logits = model(**inputs).logits
|
73 |
+
loss = compute_loss(logits, labels)
|
74 |
+
|
75 |
+
# Update model weights based on reward signal
|
76 |
+
loss = loss * torch.tensor(reward, dtype=torch.float)
|
77 |
+
loss.backward()
|
78 |
+
model.optimizer.step()
|
79 |
+
model.zero_grad()
|
80 |
+
|
81 |
if language != "English":
|
82 |
response = translate(response, "English", language)
|
83 |
|
84 |
return response
|
85 |
|
86 |
+
# Generate Email
|
87 |
+
def generate_email(issue):
|
88 |
+
template = f"""
|
89 |
+
Subject: Complaint Regarding {issue}
|
90 |
+
|
91 |
+
Dear Sir/Madam,
|
92 |
+
|
93 |
+
I am writing to formally lodge a complaint regarding {issue}. The incident occurred on [Date/Location]. The specific details are as follows:
|
94 |
+
|
95 |
+
- Issue: {issue}
|
96 |
+
- Evidence: [Provide Evidence]
|
97 |
+
|
98 |
+
I kindly request you to take appropriate action as per the legal guidelines.
|
99 |
+
|
100 |
+
Yours sincerely,
|
101 |
+
[Your Name]
|
102 |
+
"""
|
103 |
+
return template.strip()
|
104 |
+
|
105 |
+
# Gradio Interface
|
106 |
with gr.Blocks(css=".container {width: 100%; max-width: 600px;}") as app:
|
107 |
+
gr.Markdown("# AI Legal Assistant for disabilities
|
108 |
+
### Ask legal questions and generate complaints")
|
109 |
|
110 |
with gr.Row():
|
111 |
query = gr.Textbox(label="Ask your legal question", placeholder="What are my rights as a disabled person?")
|
|
|
120 |
generate_btn = gr.Button("Generate Complaint")
|
121 |
complaint_output = gr.Textbox(label="Generated Complaint", placeholder="Complaint template will appear here")
|
122 |
|
123 |
+
with gr.Row():
|
124 |
+
email_btn = gr.Button("Generate Email")
|
125 |
+
email_output = gr.Textbox(label="Generated Email", placeholder="Generated email will appear here")
|
126 |
+
|
127 |
submit_btn.click(handle_legal_query, inputs=[query, lang], outputs=output)
|
128 |
generate_btn.click(generate_complaint, inputs=issue, outputs=complaint_output)
|
129 |
+
email_btn.click(generate_email, inputs=issue, outputs=email_output)
|
130 |
|
|
|
131 |
app.launch()
|