Bhavibond's picture
Added optimizer.zero_grad(), loss.backward(), and optimizer.step() properly
6eb22ad verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import datetime
import torch
import torch.nn.functional as F
# Load FLAN-T5 for Legal Q&A
model_name = "google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Define optimizer for FLAN-T5 model
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
# Translation Models (English <-> Hindi)
translator_en_hi = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
tokenizer_en_hi = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
translator_hi_en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-hi-en")
tokenizer_hi_en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-hi-en")
# Translation Function
def translate(text, src_lang, tgt_lang):
if src_lang == "English" and tgt_lang == "Hindi":
inputs = tokenizer_en_hi(text, return_tensors="pt", padding=True, truncation=True)
outputs = translator_en_hi.generate(**inputs)
return tokenizer_en_hi.decode(outputs[0], skip_special_tokens=True)
elif src_lang == "Hindi" and tgt_lang == "English":
inputs = tokenizer_hi_en(text, return_tensors="pt", padding=True, truncation=True)
outputs = translator_hi_en.generate(**inputs)
return tokenizer_hi_en.decode(outputs[0], skip_special_tokens=True)
else:
return "Translation for this pair not supported yet!"
# Generate Complaint Template
def generate_complaint(issue):
date = datetime.datetime.now().strftime("%d-%m-%Y")
template = f"""
[Your Name]
[Your Address]
{date}
To Whom It May Concern,
**Subject: Complaint Regarding {issue}**
I am writing to formally lodge a complaint regarding {issue}. The incident occurred on [Date/Location]. The specific details are as follows:
- Issue: {issue}
- Evidence: [Provide Evidence]
I kindly request you to take appropriate action as per the legal guidelines.
Yours sincerely,
[Your Name]
"""
return template.strip()
# Self-Critical Sequence Training (SCST) for RL
def compute_loss(logits, labels):
log_probs = F.log_softmax(logits, dim=-1)
gathered_log_probs = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)).squeeze(-1)
loss = -gathered_log_probs.mean()
return loss
def handle_legal_query(query, language):
if language != "English":
query = translate(query, language, "English")
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
# Generate output
outputs = model.generate(**inputs, max_length=150)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Simple reward function (reward if response mentions legal terms)
reward = 1.0 if "law" in response.lower() or "legal" in response.lower() else -1.0
# Compute SCST Loss
labels = inputs['input_ids']
logits = model(**inputs).logits
loss = compute_loss(logits, labels)
# Update model weights based on reward signal
optimizer.zero_grad() # Reset gradients
loss = loss * torch.tensor(reward, dtype=torch.float)
loss.backward() # Backpropagation
optimizer.step() # Update model weights
if language != "English":
response = translate(response, "English", language)
return response
# Generate Email
def generate_email(issue):
template = f"""
Subject: Complaint Regarding {issue}
Dear Sir/Madam,
I am writing to formally lodge a complaint regarding {issue}. The incident occurred on [Date/Location]. The specific details are as follows:
- Issue: {issue}
- Evidence: [Provide Evidence]
I kindly request you to take appropriate action as per the legal guidelines.
Yours sincerely,
[Your Name]
"""
return template.strip()
# Gradio Interface
with gr.Blocks(css=".container {width: 100%; max-width: 600px;}") as app:
gr.Markdown("# AI Legal Assistant for Disabilities \n### Ask legal questions and generate complaints")
with gr.Row():
query = gr.Textbox(label="Ask your legal question", placeholder="What are my rights as a disabled person?")
lang = gr.Dropdown(["English", "Hindi"], label="Language", value="English")
with gr.Row():
submit_btn = gr.Button("Get Legal Advice")
output = gr.Textbox(label="Legal Advice", placeholder="Legal advice will appear here")
with gr.Row():
issue = gr.Textbox(label="Describe your issue", placeholder="Facing discrimination at work...")
generate_btn = gr.Button("Generate Complaint")
complaint_output = gr.Textbox(label="Generated Complaint", placeholder="Complaint template will appear here")
with gr.Row():
email_btn = gr.Button("Generate Email")
email_output = gr.Textbox(label="Generated Email", placeholder="Generated email will appear here")
submit_btn.click(handle_legal_query, inputs=[query, lang], outputs=output)
generate_btn.click(generate_complaint, inputs=issue, outputs=complaint_output)
email_btn.click(generate_email, inputs=issue, outputs=email_output)
# Launch the app
app.launch()