Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import time
|
2 |
import subprocess
|
3 |
import sys
|
4 |
|
@@ -6,38 +5,26 @@ def install_and_import(package):
|
|
6 |
try:
|
7 |
__import__(package)
|
8 |
except ImportError:
|
9 |
-
print(f"{package}
|
10 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
11 |
|
|
|
12 |
install_and_import("gradio")
|
13 |
install_and_import("transformers")
|
14 |
install_and_import("torch")
|
15 |
|
|
|
16 |
import gradio as gr
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
18 |
import torch
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
loaded_models = {}
|
25 |
-
|
26 |
-
def load_model_and_tokenizer(model_key):
|
27 |
-
if model_key not in loaded_models:
|
28 |
-
print(f"Loading model {model_key}...")
|
29 |
-
model_name = MODEL_OPTIONS[model_key]
|
30 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
32 |
-
loaded_models[model_key] = (tokenizer, model)
|
33 |
-
return loaded_models[model_key]
|
34 |
-
|
35 |
-
def generate_text(prompt, temperature, top_k, max_new_tokens, model_key):
|
36 |
-
tokenizer, model = load_model_and_tokenizer(model_key)
|
37 |
|
|
|
38 |
inputs = tokenizer(prompt, return_tensors="pt")
|
39 |
-
|
40 |
-
start_time = time.time()
|
41 |
output = model.generate(
|
42 |
**inputs,
|
43 |
max_new_tokens=int(max_new_tokens),
|
@@ -45,37 +32,22 @@ def generate_text(prompt, temperature, top_k, max_new_tokens, model_key):
|
|
45 |
top_k=int(top_k),
|
46 |
do_sample=True,
|
47 |
)
|
48 |
-
end_time = time.time()
|
49 |
-
|
50 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=False)
|
51 |
generated_text = generated_text.replace(" ", "").replace("Ġ", " ")
|
|
|
52 |
|
53 |
-
|
54 |
-
token_count = len(tokenized_output)
|
55 |
-
|
56 |
-
elapsed = end_time - start_time
|
57 |
-
tokens_per_sec = token_count / elapsed if elapsed > 0 else 0
|
58 |
-
|
59 |
-
details = f"Token count: {token_count} | Tokens per second: {tokens_per_sec:.2f}"
|
60 |
-
return generated_text, details
|
61 |
-
|
62 |
-
interface = gr.Interface(
|
63 |
fn=generate_text,
|
64 |
inputs=[
|
65 |
-
gr.Textbox(lines=
|
66 |
gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="Temperature"),
|
67 |
-
gr.Slider(minimum=1, maximum=50, value=
|
68 |
-
gr.Slider(minimum=1, maximum=100, value=
|
69 |
-
gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), value="BrtGPT-124m-Base (Smartest and Fastest)", label="Select Model"),
|
70 |
-
],
|
71 |
-
outputs=[
|
72 |
-
"text",
|
73 |
-
gr.Textbox(label="Performance", interactive=False)
|
74 |
],
|
|
|
75 |
title="BrtGPT-124m-Base",
|
76 |
description="Adjust the parameters, select the model, and generate text. (0.7 Temp and Top-k = 10 is good for CREATIVITY, 0.1/0.15 Temp. and Top-k = 1-5 is good for ACCURACY"
|
77 |
)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
|
|
|
|
|
1 |
import subprocess
|
2 |
import sys
|
3 |
|
|
|
5 |
try:
|
6 |
__import__(package)
|
7 |
except ImportError:
|
8 |
+
print(f"{package} yüklü değil, kuruluyor...")
|
9 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
10 |
|
11 |
+
# Gerekli paketleri kontrol et ve kur
|
12 |
install_and_import("gradio")
|
13 |
install_and_import("transformers")
|
14 |
install_and_import("torch")
|
15 |
|
16 |
+
# Şimdi import et
|
17 |
import gradio as gr
|
18 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
19 |
import torch
|
20 |
|
21 |
+
# Model ve tokenizer yükleme
|
22 |
+
model_name = "Bertug1911/BrtGPT-124m-Base"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def generate_text(prompt, temperature, top_k, max_new_tokens):
|
27 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
|
28 |
output = model.generate(
|
29 |
**inputs,
|
30 |
max_new_tokens=int(max_new_tokens),
|
|
|
32 |
top_k=int(top_k),
|
33 |
do_sample=True,
|
34 |
)
|
|
|
|
|
35 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=False)
|
36 |
generated_text = generated_text.replace(" ", "").replace("Ġ", " ")
|
37 |
+
return generated_text
|
38 |
|
39 |
+
arayuz = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
fn=generate_text,
|
41 |
inputs=[
|
42 |
+
gr.Textbox(lines=3, placeholder="Your prompt..."),
|
43 |
gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.01, label="Temperature"),
|
44 |
+
gr.Slider(minimum=1, maximum=50, value=1, step=10, label="Top-K"),
|
45 |
+
gr.Slider(minimum=1, maximum=100, value=3, step=15, label="Max New Tokens"),
|
|
|
|
|
|
|
|
|
|
|
46 |
],
|
47 |
+
outputs="text",
|
48 |
title="BrtGPT-124m-Base",
|
49 |
description="Adjust the parameters, select the model, and generate text. (0.7 Temp and Top-k = 10 is good for CREATIVITY, 0.1/0.15 Temp. and Top-k = 1-5 is good for ACCURACY"
|
50 |
)
|
51 |
|
52 |
+
arayuz.launch()
|
|
|
53 |
|