Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -172,6 +172,40 @@ with gr.Blocks(fill_width=True) as demo:
|
|
172 |
|
173 |
T_data_ss_state = gr.State(value=pd.DataFrame())
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
with gr.Tab("Event Type Classification"):
|
176 |
gr.Markdown(
|
177 |
"""
|
@@ -244,36 +278,6 @@ with gr.Blocks(fill_width=True) as demo:
|
|
244 |
hsummary = gr.Textbox(label="Summary")
|
245 |
|
246 |
qa_df = gr.DataFrame(visible=False)
|
247 |
-
|
248 |
-
|
249 |
-
with gr.Tab("Single Text Classification"):
|
250 |
-
gr.Markdown(
|
251 |
-
"""
|
252 |
-
# Event Type Prediction Demo
|
253 |
-
In this section you test the relevance classifier with written texts.\n
|
254 |
-
Usage:\n
|
255 |
-
- Type a tweet-like text in the textbox.\n
|
256 |
-
- Then press Enter.\n
|
257 |
-
""")
|
258 |
-
with gr.Row():
|
259 |
-
with gr.Column(scale=3):
|
260 |
-
model_sing_classify = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
261 |
-
with gr.Column(scale=7):
|
262 |
-
threshold_sing_classify = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold",
|
263 |
-
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
264 |
-
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
265 |
-
|
266 |
-
text_to_classify = gr.Textbox(label="Text", info="Enter tweet-like text", submit_btn=True)
|
267 |
-
text_to_classify_examples = gr.Examples([["The streets are flooded, I can't leave #BostonStorm"],
|
268 |
-
["Controlado el incendio de Rodezno que ha obligado a desalojar a varias bodegas de la zona."],
|
269 |
-
["Cambrils:estaci贸 Renfe inundada 19 persones dins d'un tren. FGC a Capellades, petit descarrilament 5 passatgers #Inuncat @emergenciescat"],
|
270 |
-
["Anscheinend steht die komplette Neckarwiese unter Wasser! #Hochwasser"]], text_to_classify)
|
271 |
-
|
272 |
-
with gr.Row():
|
273 |
-
with gr.Column():
|
274 |
-
classification = gr.Textbox(label="Classification")
|
275 |
-
with gr.Column():
|
276 |
-
classification_score = gr.Number(label="Classification Score")
|
277 |
|
278 |
|
279 |
# with gr.Tab("Event Type Classification Eval"):
|
|
|
172 |
|
173 |
T_data_ss_state = gr.State(value=pd.DataFrame())
|
174 |
|
175 |
+
|
176 |
+
with gr.Tab("Single Text Classification"):
|
177 |
+
gr.Markdown(
|
178 |
+
"""
|
179 |
+
# Event Type Prediction Demo
|
180 |
+
In this section you test the relevance classifier with written texts.\n
|
181 |
+
Usage:\n
|
182 |
+
- Type a tweet-like text in the textbox.\n
|
183 |
+
- Then press Enter.\n
|
184 |
+
""")
|
185 |
+
with gr.Group():
|
186 |
+
with gr.Row():
|
187 |
+
with gr.Column(scale=3):
|
188 |
+
model_sing_classify = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
189 |
+
with gr.Column(scale=7):
|
190 |
+
with gr.Accordion("Prediction threshold", open=False):
|
191 |
+
T_threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
|
192 |
+
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
193 |
+
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
194 |
+
|
195 |
+
text_to_classify = gr.Textbox(label="Text", info="Enter tweet-like text", submit_btn=True)
|
196 |
+
text_to_classify_examples = gr.Examples([["The streets are flooded, I can't leave #BostonStorm"],
|
197 |
+
["Controlado el incendio de Rodezno que ha obligado a desalojar a varias bodegas de la zona."],
|
198 |
+
["Cambrils:estaci贸 Renfe inundada 19 persones dins d'un tren. FGC a Capellades, petit descarrilament 5 passatgers #Inuncat @emergenciescat"],
|
199 |
+
["Anscheinend steht die komplette Neckarwiese unter Wasser! #Hochwasser"]], text_to_classify)
|
200 |
+
|
201 |
+
with gr.Group():
|
202 |
+
with gr.Row():
|
203 |
+
with gr.Column():
|
204 |
+
classification = gr.Textbox(label="Classification")
|
205 |
+
with gr.Column():
|
206 |
+
classification_score = gr.Number(label="Classification Score")
|
207 |
+
|
208 |
+
|
209 |
with gr.Tab("Event Type Classification"):
|
210 |
gr.Markdown(
|
211 |
"""
|
|
|
278 |
hsummary = gr.Textbox(label="Summary")
|
279 |
|
280 |
qa_df = gr.DataFrame(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
|
283 |
# with gr.Tab("Event Type Classification Eval"):
|