jayebaku commited on
Commit
fc36c14
verified
1 Parent(s): 31fd4b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -30
app.py CHANGED
@@ -172,6 +172,40 @@ with gr.Blocks(fill_width=True) as demo:
172
 
173
  T_data_ss_state = gr.State(value=pd.DataFrame())
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  with gr.Tab("Event Type Classification"):
176
  gr.Markdown(
177
  """
@@ -244,36 +278,6 @@ with gr.Blocks(fill_width=True) as demo:
244
  hsummary = gr.Textbox(label="Summary")
245
 
246
  qa_df = gr.DataFrame(visible=False)
247
-
248
-
249
- with gr.Tab("Single Text Classification"):
250
- gr.Markdown(
251
- """
252
- # Event Type Prediction Demo
253
- In this section you test the relevance classifier with written texts.\n
254
- Usage:\n
255
- - Type a tweet-like text in the textbox.\n
256
- - Then press Enter.\n
257
- """)
258
- with gr.Row():
259
- with gr.Column(scale=3):
260
- model_sing_classify = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
261
- with gr.Column(scale=7):
262
- threshold_sing_classify = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold",
263
- info="This value sets a threshold by which texts classified flood or fire are accepted, \
264
- higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
265
-
266
- text_to_classify = gr.Textbox(label="Text", info="Enter tweet-like text", submit_btn=True)
267
- text_to_classify_examples = gr.Examples([["The streets are flooded, I can't leave #BostonStorm"],
268
- ["Controlado el incendio de Rodezno que ha obligado a desalojar a varias bodegas de la zona."],
269
- ["Cambrils:estaci贸 Renfe inundada 19 persones dins d'un tren. FGC a Capellades, petit descarrilament 5 passatgers #Inuncat @emergenciescat"],
270
- ["Anscheinend steht die komplette Neckarwiese unter Wasser! #Hochwasser"]], text_to_classify)
271
-
272
- with gr.Row():
273
- with gr.Column():
274
- classification = gr.Textbox(label="Classification")
275
- with gr.Column():
276
- classification_score = gr.Number(label="Classification Score")
277
 
278
 
279
  # with gr.Tab("Event Type Classification Eval"):
 
172
 
173
  T_data_ss_state = gr.State(value=pd.DataFrame())
174
 
175
+
176
+ with gr.Tab("Single Text Classification"):
177
+ gr.Markdown(
178
+ """
179
+ # Event Type Prediction Demo
180
+ In this section you test the relevance classifier with written texts.\n
181
+ Usage:\n
182
+ - Type a tweet-like text in the textbox.\n
183
+ - Then press Enter.\n
184
+ """)
185
+ with gr.Group():
186
+ with gr.Row():
187
+ with gr.Column(scale=3):
188
+ model_sing_classify = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
189
+ with gr.Column(scale=7):
190
+ with gr.Accordion("Prediction threshold", open=False):
191
+ T_threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
192
+ info="This value sets a threshold by which texts classified flood or fire are accepted, \
193
+ higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
194
+
195
+ text_to_classify = gr.Textbox(label="Text", info="Enter tweet-like text", submit_btn=True)
196
+ text_to_classify_examples = gr.Examples([["The streets are flooded, I can't leave #BostonStorm"],
197
+ ["Controlado el incendio de Rodezno que ha obligado a desalojar a varias bodegas de la zona."],
198
+ ["Cambrils:estaci贸 Renfe inundada 19 persones dins d'un tren. FGC a Capellades, petit descarrilament 5 passatgers #Inuncat @emergenciescat"],
199
+ ["Anscheinend steht die komplette Neckarwiese unter Wasser! #Hochwasser"]], text_to_classify)
200
+
201
+ with gr.Group():
202
+ with gr.Row():
203
+ with gr.Column():
204
+ classification = gr.Textbox(label="Classification")
205
+ with gr.Column():
206
+ classification_score = gr.Number(label="Classification Score")
207
+
208
+
209
  with gr.Tab("Event Type Classification"):
210
  gr.Markdown(
211
  """
 
278
  hsummary = gr.Textbox(label="Summary")
279
 
280
  qa_df = gr.DataFrame(visible=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
 
282
 
283
  # with gr.Tab("Event Type Classification Eval"):