jayebaku commited on
Commit
1c33b13
·
verified ·
1 Parent(s): 736168d

Update qa_summary.py

Browse files
Files changed (1) hide show
  1. qa_summary.py +4 -1
qa_summary.py CHANGED
@@ -1,7 +1,7 @@
1
  from transformers import AutoModelForCausalLM, AutoTokenizer
2
 
3
 
4
- def generate_answer(llm_name, texts, query, mode='validate'):
5
 
6
  if llm_name == 'solar':
7
  tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
@@ -38,6 +38,9 @@ def generate_answer(llm_name, texts, query, mode='validate'):
38
  conversation = [ {'role': 'user', 'content': f'For the following query and documents, try to answer the given query based on the documents.\nQuery: {query} \nDocuments: {template_texts}.'} ]
39
  elif mode == 'h_summarize':
40
  conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
 
 
 
41
 
42
  prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
43
  inputs = tokenizer(prompt, return_tensors="pt").to(llm_model.device)
 
1
  from transformers import AutoModelForCausalLM, AutoTokenizer
2
 
3
 
4
+ def generate_answer(llm_name, texts, query, queries, mode='validate'):
5
 
6
  if llm_name == 'solar':
7
  tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
 
38
  conversation = [ {'role': 'user', 'content': f'For the following query and documents, try to answer the given query based on the documents.\nQuery: {query} \nDocuments: {template_texts}.'} ]
39
  elif mode == 'h_summarize':
40
  conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
41
+ elif mode == "multi_summarize":
42
+ conversation = [ {'role': 'user', 'content': f'For the following queries and documents, try to answer the given queries based on the documents.\nQueries: {queries} \nDocuments: {template_texts}.'} ]
43
+
44
 
45
  prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
46
  inputs = tokenizer(prompt, return_tensors="pt").to(llm_model.device)