Spaces:
Running
on
Zero
Running
on
Zero
Update qa_summary.py
Browse files- qa_summary.py +60 -0
qa_summary.py
CHANGED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
|
3 |
+
|
4 |
+
def generate_answer(llm_name, texts, query, mode='validate'):
|
5 |
+
|
6 |
+
if llm_name == 'solar':
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
|
8 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
"Upstage/SOLAR-10.7B-Instruct-v1.0",
|
10 |
+
device_map="auto", #device_map="cuda"
|
11 |
+
#torch_dtype=torch.float16,)
|
12 |
+
|
13 |
+
elif llm_name == 'mistral':
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_fast=True)
|
15 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
17 |
+
device_map="auto", #device_map="cuda"
|
18 |
+
#torch_dtype=torch.float16,)
|
19 |
+
|
20 |
+
elif llm_name == 'phi3mini':
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", use_fast=True)
|
22 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
24 |
+
device_map="auto",
|
25 |
+
torch_dtype="auto",
|
26 |
+
trust_remote_code=True,)
|
27 |
+
|
28 |
+
template_texts =""
|
29 |
+
for i, text in enumerate(texts):
|
30 |
+
template_texts += f'{i+1}. {text} \n'
|
31 |
+
|
32 |
+
if mode == 'validate':
|
33 |
+
conversation = [ {'role': 'user', 'content': f'Given the following query: "{query}"? \nIs the following document relevant to answer this query?\n{template_texts} \nResponse: Yes / No'} ]
|
34 |
+
elif mode == 'summarize':
|
35 |
+
conversation = [ {'role': 'user', 'content': f'For the following query and documents, try to answer the given query based on the documents.\nQuery: {query} \nDocuments: {template_texts}.'} ]
|
36 |
+
elif mode == 'h_summarize':
|
37 |
+
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
38 |
+
|
39 |
+
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
40 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(llm_model.device)
|
41 |
+
outputs = llm_model.generate(**inputs, use_cache=True, max_length=4096,do_sample=True,temperature=0.7,top_p=0.95,top_k=10,repetition_penalty=1.1)
|
42 |
+
output_text = tokenizer.decode(outputs[0])
|
43 |
+
if llm_name == "solar":
|
44 |
+
assistant_respond = output_text.split("Assistant:")[1]
|
45 |
+
elif llm_name == "phi3mini":
|
46 |
+
assistant_respond = output_text.split("<|assistant|>")[1]
|
47 |
+
assistant_respond = assistant_respond[:-7]
|
48 |
+
else:
|
49 |
+
assistant_respond = output_text.split("[/INST]")[1]
|
50 |
+
if mode == 'validate':
|
51 |
+
if 'Yes' in assistant_respond:
|
52 |
+
return True
|
53 |
+
else:
|
54 |
+
return False
|
55 |
+
elif mode == 'summarize':
|
56 |
+
return assistant_respond
|
57 |
+
elif mode == 'h_summarize':
|
58 |
+
return assistant_respond
|
59 |
+
|
60 |
+
|