ssolito commited on
Commit
4677156
·
verified ·
1 Parent(s): 122eea4

Update whisper_cs.py

Browse files
Files changed (1) hide show
  1. whisper_cs.py +5 -27
whisper_cs.py CHANGED
@@ -105,6 +105,7 @@ def cleanup_temp_files(*file_paths):
105
  if path and os.path.exists(path):
106
  os.remove(path)
107
 
 
108
  try:
109
  faster_model = WhisperModel(
110
  MODEL_PATH_V2_FAST,
@@ -118,6 +119,9 @@ except RuntimeError as e:
118
  device="cpu",
119
  compute_type="int8"
120
  )
 
 
 
121
 
122
  def load_whisper_model(model_path: str):
123
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -165,33 +169,7 @@ def transcribe_audio(model, audio_path: str) -> Dict:
165
  'error': str(e),
166
  'success': False
167
  }
168
-
169
-
170
-
171
- diarization_pipeline = DiarizationPipeline.from_pretrained("./pyannote/config.yaml")
172
- align_model, metadata = whisperx.load_align_model(language_code="en", device=DEVICE)
173
-
174
- asr_pipe = pipeline(
175
- task="automatic-speech-recognition",
176
- model=MODEL_PATH_1,
177
- chunk_length_s=30,
178
- device=DEVICE,
179
- return_timestamps=True)
180
-
181
- def diarization(audio_path):
182
- diarization_result = diarization_pipeline(audio_path)
183
- diarized_segments = list(diarization_result.itertracks(yield_label=True))
184
- print('diarized_segments',diarized_segments)
185
- return diarized_segments
186
-
187
- def asr(audio_path):
188
- print(f"[DEBUG] Starting ASR on audio: {audio_path}")
189
- asr_result = asr_pipe(audio_path, return_timestamps=True)
190
- print(f"[DEBUG] Raw ASR result: {asr_result}")
191
- asr_segments = hf_chunks_to_whisperx_segments(asr_result['chunks'])
192
- asr_segments = assign_timestamps(asr_segments, audio_path)
193
- return asr_segments
194
-
195
 
196
  def generate(audio_path, use_v2_fast):
197
 
 
105
  if path and os.path.exists(path):
106
  os.remove(path)
107
 
108
+ '''
109
  try:
110
  faster_model = WhisperModel(
111
  MODEL_PATH_V2_FAST,
 
119
  device="cpu",
120
  compute_type="int8"
121
  )
122
+ '''
123
+
124
+ faster_model = WhisperModel(MODEL_PATH_V2_FAST, device=DEVICE, compute_type="int8")
125
 
126
  def load_whisper_model(model_path: str):
127
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
169
  'error': str(e),
170
  'success': False
171
  }
172
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
 
174
  def generate(audio_path, use_v2_fast):
175