Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,359 Bytes
9fda066 b7fa1b5 5bcf187 b7fa1b5 5bcf187 c2fb837 3cf670e 5bcf187 b7fa1b5 ee59937 3cf670e c2fb837 122eea4 5bcf187 c2fb837 5bcf187 95d83f6 c2fb837 8cdbd94 95d83f6 c2fb837 95d83f6 c2fb837 0053d2c 5bcf187 b7fa1b5 5bcf187 b7fa1b5 5bcf187 0053d2c 8cdbd94 c2fb837 5669eef c2fb837 5bcf187 c2fb837 95d83f6 c2fb837 8cdbd94 c2fb837 ee59937 c2fb837 ee59937 c2fb837 ee59937 1354064 122eea4 870de60 122eea4 870de60 122eea4 870de60 1354064 870de60 c2fb837 1354064 95d83f6 3cf670e ee59937 3cf670e 94ecbf5 3cf670e c2fb837 3cf670e c2fb837 3cf670e c2fb837 3cf670e 5669eef 3cf670e 5bcf187 3cf670e ee59937 99577ba ee59937 3cf670e 95d83f6 c2fb837 5669eef 95d83f6 24a2822 790d7cc c2fb837 ee59937 c2fb837 ee59937 0053d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import spaces
from pydub import AudioSegment
import os
import torchaudio
import torch
import re
import whisper_timestamped as whisper_ts
from typing import Dict
from faster_whisper import WhisperModel
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float32
DEBUG_MODE = True
MODEL_PATH_V2 = "langtech-veu/whisper-timestamped-cs"
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("[INFO] CUDA available:", torch.cuda.is_available())
def clean_text(input_text):
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text)
return ' '.join(output_text.split()).lower()
def split_stereo_channels(audio_path):
ext = os.path.splitext(audio_path)[1].lower()
if ext == ".wav":
audio = AudioSegment.from_wav(audio_path)
elif ext == ".mp3":
audio = AudioSegment.from_file(audio_path, format="mp3")
else:
raise ValueError(f"Unsupported file format: {audio_path}")
channels = audio.split_to_mono()
if len(channels) != 2:
raise ValueError(f"Audio {audio_path} does not have 2 channels.")
channels[0].export(f"temp_mono_speaker1.wav", format="wav") # Right
channels[1].export(f"temp_mono_speaker2.wav", format="wav") # Left
def format_audio(audio_path):
input_audio, sample_rate = torchaudio.load(audio_path)
if input_audio.shape[0] == 2:
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
input_audio = resampler(input_audio)
return input_audio.squeeze(), 16000
def post_process_transcription(transcription, max_repeats=2):
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
cleaned_tokens = []
repetition_count = 0
previous_token = None
for token in tokens:
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
if reduced_token == previous_token:
repetition_count += 1
if repetition_count <= max_repeats:
cleaned_tokens.append(reduced_token)
else:
repetition_count = 1
cleaned_tokens.append(reduced_token)
previous_token = reduced_token
cleaned_transcription = " ".join(cleaned_tokens)
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
return cleaned_transcription
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
merged_transcription = ''
current_speaker = None
current_segment = []
for i in range(1, len(segments) - 1, 2):
speaker_tag = segments[i]
text = segments[i + 1].strip()
speaker = re.search(r'\d{2}', speaker_tag).group()
if speaker == current_speaker:
current_segment.append(text)
else:
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
current_speaker = speaker
current_segment = [text]
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
return merged_transcription.strip()
def cleanup_temp_files(*file_paths):
if DEBUG_MODE: print(f"Entered cleanup_temp_files function...")
if DEBUG_MODE: print(f"file_paths: {file_paths}")
for path in file_paths:
if path and os.path.exists(path):
if DEBUG_MODE: print(f"Removing path: {path}")
os.remove(path)
if DEBUG_MODE: print(f"Exited cleanup_temp_files function.")
'''
try:
faster_model = WhisperModel(
MODEL_PATH_V2_FAST,
device="cuda" if torch.cuda.is_available() else "cpu",
compute_type="float16" if torch.cuda.is_available() else "int8"
)
except RuntimeError as e:
print(f"[WARNING] Failed to load model on GPU: {e}")
faster_model = WhisperModel(
MODEL_PATH_V2_FAST,
device="cpu",
compute_type="int8"
)
'''
faster_model = WhisperModel(MODEL_PATH_V2_FAST, device=DEVICE, compute_type="int8")
def load_whisper_model(model_path: str):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = whisper_ts.load_model(model_path, device=device)
return model
def transcribe_audio(model, audio_path: str) -> Dict:
try:
result = whisper_ts.transcribe(
model,
audio_path,
beam_size=5,
best_of=5,
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
vad=False,
detect_disfluencies=True,
)
words = []
for segment in result.get('segments', []):
for word in segment.get('words', []):
word_text = word.get('word', '').strip()
if word_text.startswith(' '):
word_text = word_text[1:]
words.append({
'word': word_text,
'start': word.get('start', 0),
'end': word.get('end', 0),
'confidence': word.get('confidence', 0)
})
return {
'audio_path': audio_path,
'text': result['text'].strip(),
'segments': result.get('segments', []),
'words': words,
'duration': result.get('duration', 0),
'success': True
}
except Exception as e:
return {
'audio_path': audio_path,
'error': str(e),
'success': False
}
def generate(audio_path, use_v2_fast):
if DEBUG_MODE: print(f"Entering generate function...")
if DEBUG_MODE: print(f"use_v2_fast: {use_v2_fast}")
if use_v2_fast:
split_stereo_channels(audio_path)
left_channel_path = "temp_mono_speaker2.wav"
right_channel_path = "temp_mono_speaker1.wav"
left_waveform, left_sr = format_audio(left_channel_path)
right_waveform, right_sr = format_audio(right_channel_path)
left_waveform = left_waveform.numpy().astype("float32")
right_waveform = right_waveform.numpy().astype("float32")
left_result, info = faster_model.transcribe(left_waveform, beam_size=5, task="transcribe")
right_result, info = faster_model.transcribe(right_waveform, beam_size=5, task="transcribe")
left_result = list(left_result)
right_result = list(right_result)
def get_faster_segments(segments, speaker_label):
return [
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
for seg in segments if seg.text
]
left_segs = get_faster_segments(left_result, "Speaker 1")
right_segs = get_faster_segments(right_result, "Speaker 2")
merged_transcript = sorted(
left_segs + right_segs,
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
)
clean_output = ""
for start, end, speaker, text in merged_transcript:
clean_output += f"[{speaker}]: {text}\n"
# FIX Seems that post_merge_consecutive_segments_from_text returns an empty string
#clean_output = post_merge_consecutive_segments_from_text(clean_output)
#print('clean_output',clean_output)
if DEBUG_MODE: print(f"clean_output: {clean_output}")
else:
model = load_whisper_model(MODEL_PATH_V2)
split_stereo_channels(audio_path)
left_channel_path = "temp_mono_speaker2.wav"
right_channel_path = "temp_mono_speaker1.wav"
left_waveform, left_sr = format_audio(left_channel_path)
right_waveform, right_sr = format_audio(right_channel_path)
left_result = transcribe_audio(model, left_waveform)
right_result = transcribe_audio(model, right_waveform)
def get_segments(result, speaker_label):
segments = result.get("segments", [])
if not segments:
return []
return [
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label, post_process_transcription(seg.get("text", "").strip()))
for seg in segments if seg.get("text")
]
left_segs = get_segments(left_result, "Speaker 1")
right_segs = get_segments(right_result, "Speaker 2")
merged_transcript = sorted(
left_segs + right_segs,
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
)
output = ""
for start, end, speaker, text in merged_transcript:
output += f"[{speaker}]: {text}\n"
clean_output = output.strip()
if DEBUG_MODE: print(f"Clean output generated.")
cleanup_temp_files(
"temp_mono_speaker1.wav",
"temp_mono_speaker2.wav"
)
if DEBUG_MODE: print(f"Exiting generate function...")
return clean_output |