File size: 1,453 Bytes
6c226f9
5bcf187
 
c01ffa1
5bcf187
35b2d21
5bcf187
c01ffa1
5bcf187
3c0cd8e
bab1585
 
6c226f9
35b2d21
 
6c226f9
13e0565
5bcf187
3c0cd8e
85b6c52
5bcf187
85b6c52
5bcf187
85b6c52
 
 
f6b1fad
5bcf187
85b6c52
 
 
 
5bcf187
 
 
6c226f9
5bcf187
 
6c226f9
5208902
5bcf187
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
from whisper import generate
from AinaTheme import theme  
import spaces

USE_V2 = False

@spaces.GPU
def transcribe(inputs, model_version):
    if inputs is None:
        raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
                       "o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")

    use_v2 = model_version == "v2.0"
    return generate(audio_path=inputs, use_v2=use_v2)

description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
              " comprovar els models de reconeixement de parla per a m贸bils."

def clear():
    return None, "v1.0"

with gr.Blocks() as demo:
    gr.Markdown(description_string)
    with gr.Row():
        with gr.Column(scale=1):
            model_version = gr.Dropdown(label="Model Version", choices=["v1.0", "v2.0"], value="v1.0")
            input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")

        with gr.Column(scale=1):
            output = gr.Textbox(label="Output", lines=8)

    with gr.Row(variant="panel"):
        clear_btn = gr.Button("Clear")
        submit_btn = gr.Button("Submit", variant="primary")

    submit_btn.click(fn=transcribe, inputs=[input, model_version], outputs=[output])
    clear_btn.click(fn=clear, inputs=[], outputs=[input, model_version], queue=False)

if __name__ == "__main__":
    demo.launch()