openseek / assets /WorkingGroupsSection-C5eTMvbg.js
ldwang's picture
add assets
356ce31
import{_ as e}from"./index-Ce3uFbG-.js";import{U as n,W as i,X as t,F as a,Z as r,V as l,a1 as o,k as s,Y as d,G as g}from"./vue-vendor-BGH_qSJ2.js";import"./antd-vendor-DegVPrM_.js";const c={class:"section feature-cards-section"},p={class:"cards-container"},u={class:"card-content"},m=["innerHTML"];const f=e({name:"FeatureCardsSection",data:()=>({features:[{title:"Data Group",description:'\n We aim to build datasets that are:\n <ul style="margin-top: 0; margin-bottom: 0; padding-left: 30px;font-size:1rem;">\n <li> Large-Scale (Exceeding 10T tokens)</li>\n <li>Multilingual </li>\n <li>Multimodal</li>\n <li>Enhanced by Synthetic Data</li>\n </ul>\n to accelerate the open-source AI model training.\n ',link:"https://github.com/FlagAI-Open/OpenSeek/tree/main/openseek/data",gradientPos:"80% 20%",gradientColor:"rgba(78, 171, 248, 0.3)",image:"/group1.png"},{title:"Algorithm Group",description:'\n We focus on the following key areas:\n <ul style="margin-top: 0; margin-bottom: 0; padding-left: 30px;font-size:1rem;">\n <li>Data Mixing</li>\n <li>Model Initialization</li>\n <li>Hyperparameter Tuning</li>\n <li>Reinforcement Learning</li>\n </ul>\n to optimize AI model training efficiency and enhance reasoning capabilities and multimodal abilities.\n ',link:"https://github.com/FlagAI-Open/OpenSeek/tree/main/openseek/algorithm",gradientPos:"20% 80%",gradientColor:"rgba(255, 59, 143, 0.3)",image:"/group2.png"},{title:"System Group",description:'\n We intend to provide a training system:\n <ul style="margin-top: 0; margin-bottom: 0; padding-left: 30px;font-size:1rem;">\n <li>Replicating DeepSeek V3 & R1’s Distributed Training System</li>\n <li>Improving End-to-End Training Efficiency</li>\n </ul>\n ',link:"https://github.com/FlagOpen/FlagScale",gradientPos:"50% 50%",gradientColor:"rgba(120, 198, 255, 0.3)",image:"/group3.png"}]})},[["render",function(e,f,b,h,k,y){const v=l("a-button");return i(),n("section",c,[f[2]||(f[2]=t("h2",{class:"section-title","data-text":"Working Groups"},"Working Groups",-1)),t("div",p,[(i(!0),n(a,null,r(k.features,((e,a)=>(i(),n("div",{key:a,class:"feature-card card gradient-border unified-card",style:{}},[t("div",{class:"card-image",style:o({backgroundImage:`url(${e.image})`})},null,4),t("div",u,[f[1]||(f[1]=t("h2",null,null,-1)),t("p",{class:"unified-card-text subTitle",innerHTML:e.description},null,8,m),s(v,{type:"link",class:"learn-more",target:"_blank",href:e.link},{default:d((()=>f[0]||(f[0]=[g(" Learn More → ")]))),_:2,__:[0]},1032,["href"])])])))),128))])])}],["__scopeId","data-v-be903d63"]]);export{f as default};