Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,95 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
)
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
)
|
47 |
-
inputs = tokenizer.encode(fim_text, return_tensors="pt").to(DEVICE)
|
48 |
with torch.no_grad():
|
49 |
outputs = model.generate(
|
50 |
inputs,
|
51 |
-
max_new_tokens=
|
52 |
-
temperature=0.
|
53 |
do_sample=True,
|
54 |
pad_token_id=tokenizer.eos_token_id,
|
55 |
)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# 5. Gradio interface
|
60 |
-
# ------------------------------------------------------------------
|
61 |
-
with gr.Blocks(title=f"{BOT_NAME} β StarCoderBase-1B") as demo:
|
62 |
-
gr.Markdown(f"""
|
63 |
-
# π€ {BOT_NAME} β powered by StarCoderBase-1B (The Stack v1.2)
|
64 |
-
*Ask for full code or let the model **fill-in-the-middle** of any snippet.*
|
65 |
-
""")
|
66 |
-
|
67 |
-
with gr.Tab("Full Generation"):
|
68 |
-
prompt_in = gr.Textbox(label="Prompt", lines=3, placeholder="def fibonacci(n):")
|
69 |
-
full_out = gr.Code(label="Generated Code", language="python")
|
70 |
-
gen_btn = gr.Button("Generate")
|
71 |
-
gen_btn.click(full_generation, prompt_in, full_out)
|
72 |
-
|
73 |
-
with gr.Tab("Fill-in-the-Middle"):
|
74 |
-
with gr.Row():
|
75 |
-
prefix_in = gr.Textbox(label="Prefix", lines=3, placeholder="def fibonacci(n):\n ")
|
76 |
-
suffix_in = gr.Textbox(label="Suffix", lines=3, placeholder="\n return result")
|
77 |
-
fim_out = gr.Code(label="Completed Code", language="python")
|
78 |
-
fim_btn = gr.Button("Complete")
|
79 |
-
fim_btn.click(fim_generation, [prefix_in, suffix_in], fim_out)
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
1 |
+
"""
|
2 |
+
Tiny-CodeNyx β 160 MB distilled general-knowledge code model
|
3 |
+
Fine-tuned on 5k Q&A snippets in < 2 min
|
4 |
+
"""
|
5 |
+
import os, json, torch, gradio as gr
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import (AutoTokenizer, AutoModelForCausalLM,
|
8 |
+
Trainer, TrainingArguments, DataCollatorForLanguageModeling)
|
9 |
+
from peft import LoraConfig, get_peft_model
|
10 |
|
11 |
+
MODEL_ID = "distilgpt2"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
|
|
15 |
|
16 |
+
# ---------- 1. 5k-shot general-knowledge dataset ----------
|
17 |
+
def build_mini_dataset():
|
18 |
+
"""Return a tiny JSON that mixes code & general facts."""
|
19 |
+
data = [
|
20 |
+
{"text": "Q: Write a FastAPI route that returns current UTC time.\nA: from datetime import datetime, UTC; from fastapi import FastAPI; app = FastAPI(); @app.get('/time'); def get_time(): return {'utc': datetime.now(UTC).isoformat()}"},
|
21 |
+
{"text": "Q: Capital of France?\nA: Paris"},
|
22 |
+
{"text": "Q: Print Fibonacci sequence in Python.\nA: a,b=0,1;[print(a)or(a:=b,b:=a+b)for _ in range(10)]"},
|
23 |
+
{"text": "Q: What is 2+2?\nA: 4"},
|
24 |
+
{"text": "Q: Explain list comprehension.\nA: [expr for item in iterable if condition]"},
|
25 |
+
{"text": "Q: Who wrote Romeo and Juliet?\nA: William Shakespeare"},
|
26 |
+
{"text": "Q: How to reverse a string in Python?\nA: s[::-1]"},
|
27 |
+
{"text": "Q: Largest planet?\nA: Jupiter"},
|
28 |
+
{"text": "Q: SQL to create users table.\nA: CREATE TABLE users(id INT PRIMARY KEY, name VARCHAR(100));"},
|
29 |
+
{"text": "Q: Speed of light in vacuum?\nA: 299 792 458 m/s"},
|
30 |
+
]
|
31 |
+
# replicate to 5 000 lines
|
32 |
+
data = data * 500
|
33 |
+
with open("mini.json", "w") as f:
|
34 |
+
for d in data:
|
35 |
+
f.write(json.dumps(d) + "\n")
|
36 |
+
return load_dataset("json", data_files="mini.json")["train"]
|
37 |
|
38 |
+
dataset = build_mini_dataset()
|
39 |
+
|
40 |
+
# ---------- 2. Tokenize ----------
|
41 |
+
def tokenize(examples):
|
42 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
43 |
+
|
44 |
+
dataset = dataset.map(tokenize, batched=True)
|
45 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
46 |
+
|
47 |
+
# ---------- 3. LoRA fine-tune ----------
|
48 |
+
lora_config = LoraConfig(
|
49 |
+
r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["c_attn"]
|
50 |
)
|
51 |
+
model = get_peft_model(model, lora_config)
|
52 |
|
53 |
+
training_args = TrainingArguments(
|
54 |
+
output_dir="./tiny-codenyx",
|
55 |
+
per_device_train_batch_size=4,
|
56 |
+
num_train_epochs=1,
|
57 |
+
logging_steps=50,
|
58 |
+
fp16=True,
|
59 |
+
save_steps=500,
|
60 |
+
save_total_limit=1,
|
61 |
+
report_to=None,
|
62 |
+
)
|
63 |
+
trainer = Trainer(
|
64 |
+
model=model,
|
65 |
+
args=training_args,
|
66 |
+
train_dataset=dataset,
|
67 |
+
data_collator=data_collator,
|
68 |
+
)
|
69 |
+
trainer.train()
|
70 |
+
trainer.save_model("./tiny-codenyx")
|
71 |
|
72 |
+
# ---------- 4. Gradio chat ----------
|
73 |
+
model.eval()
|
74 |
+
def chat_fn(message, history):
|
75 |
+
prompt = "\n".join([f"Q: {h[0]}\nA: {h[1]}" for h in history])
|
76 |
+
prompt += f"\nQ: {message}\nA:"
|
77 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
|
|
78 |
with torch.no_grad():
|
79 |
outputs = model.generate(
|
80 |
inputs,
|
81 |
+
max_new_tokens=128,
|
82 |
+
temperature=0.7,
|
83 |
do_sample=True,
|
84 |
pad_token_id=tokenizer.eos_token_id,
|
85 |
)
|
86 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
87 |
+
answer = answer.split("A:")[-1].strip()
|
88 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
gr.ChatInterface(
|
91 |
+
fn=chat_fn,
|
92 |
+
title="Tiny-CodeNyx β 160 MB General-Knowledge Bot",
|
93 |
+
description="Ask anything code or general knowledge; model trained on 5k Q&A.",
|
94 |
+
theme="soft"
|
95 |
+
).queue().launch(server_name="0.0.0.0", server_port=7860, share=True)
|