File size: 5,871 Bytes
aaed37a 2158d6f f034b93 aaed37a 2158d6f f034b93 2158d6f f034b93 2158d6f f034b93 aaed37a f034b93 2158d6f f034b93 8d24163 f034b93 8d24163 f034b93 8d24163 f034b93 8d24163 f034b93 aaed37a f034b93 aaed37a 8d24163 f034b93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import streamlit as st
import librosa
import soundfile as sf
import numpy as np
import scipy.signal as signal
from scipy.io import wavfile
from io import BytesIO
import tempfile
def modify_formants(y, sr, formant_shift_factor=1.2):
# Get the power spectrum
D = librosa.stft(y)
S = np.abs(D)
# Use frame-based processing for LPC
frame_length = 2048
hop_length = 512
frames = librosa.util.frame(y, frame_length=frame_length, hop_length=hop_length)
# Process each frame
modified_frames = []
for frame in frames.T:
# Calculate LPC coefficients
a = librosa.lpc(frame, order=12)
# Shift formants
new_a = np.zeros_like(a)
new_a[0] = a[0]
for i in range(1, len(a)):
new_a[i] = a[i] * (formant_shift_factor ** i)
# Apply modified LPC filter
modified_frame = signal.lfilter([1], new_a, frame)
modified_frames.append(modified_frame)
# Reconstruct the signal
y_formant = np.concatenate([frame[:hop_length] for frame in modified_frames[:-1]] +
[modified_frames[-1]])
return librosa.util.normalize(y_formant)
def enhance_harmonics(y, sr):
# Extract harmonics using harmonic-percussive source separation
y_harmonic = librosa.effects.hpss(y)[0]
# Enhance the harmonics
y_enhanced = y_harmonic * 1.2 + y * 0.3
return librosa.util.normalize(y_enhanced)
def process_audio_advanced(audio_file, settings):
# Load audio
y, sr = librosa.load(audio_file)
# Pitch shifting with formant preservation
y_shifted = librosa.effects.pitch_shift(
y,
sr=sr,
n_steps=settings['pitch_shift']
)
# Modify formants
y_formant = modify_formants(
y_shifted,
sr,
settings['formant_shift']
)
# Enhance harmonics
y_harmonic = enhance_harmonics(y_formant, sr)
# Apply vocal tract length modification through resampling
y_vtln = librosa.effects.time_stretch(
y_harmonic,
rate=settings['vtln_factor']
)
# Smooth the output
y_smooth = signal.savgol_filter(y_vtln, 1001, 2)
# Final normalization
y_final = librosa.util.normalize(y_smooth)
return y_final, sr
def create_voice_preset(preset_name):
presets = {
'Young Female': {
'pitch_shift': 8.0,
'formant_shift': 1.3,
'vtln_factor': 1.1,
'breathiness': 0.3
},
'Mature Female': {
'pitch_shift': 6.0,
'formant_shift': 1.2,
'vtln_factor': 1.05,
'breathiness': 0.2
},
'Soft Female': {
'pitch_shift': 7.0,
'formant_shift': 1.25,
'vtln_factor': 1.15,
'breathiness': 0.4
}
}
return presets.get(preset_name)
def add_breathiness(y, sr, amount=0.3):
# Generate breath noise
noise = np.random.normal(0, 0.01, len(y))
noise_filtered = signal.lfilter([1], [1, -0.98], noise)
# Mix with original signal
y_breathy = y * (1 - amount) + noise_filtered * amount
return librosa.util.normalize(y_breathy)
st.title("Advanced Female Voice Converter")
# File uploader
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3'])
if uploaded_file is not None:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_path = tmp_file.name
# Voice preset selector
preset_name = st.selectbox(
"Select Voice Preset",
['Young Female', 'Mature Female', 'Soft Female', 'Custom']
)
if preset_name == 'Custom':
settings = {
'pitch_shift': st.slider("Pitch Shift", 0.0, 12.0, 8.0, 0.5),
'formant_shift': st.slider("Formant Shift", 1.0, 1.5, 1.2, 0.05),
'vtln_factor': st.slider("Vocal Tract Length", 0.9, 1.2, 1.1, 0.05),
'breathiness': st.slider("Breathiness", 0.0, 1.0, 0.3, 0.1)
}
else:
settings = create_voice_preset(preset_name)
if st.button("Convert Voice"):
with st.spinner("Processing audio..."):
try:
# Process audio
processed_audio, sr = process_audio_advanced(tmp_path, settings)
# Add breathiness
processed_audio = add_breathiness(
processed_audio,
sr,
settings['breathiness']
)
# Save to buffer
buffer = BytesIO()
sf.write(buffer, processed_audio, sr, format='WAV')
# Display audio player
st.audio(buffer, format='audio/wav')
# Download button
st.download_button(
label="Download Converted Audio",
data=buffer,
file_name="female_voice_converted.wav",
mime="audio/wav"
)
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
st.markdown("""
### Voice Conversion Features:
- Pitch shifting with formant preservation
- Harmonic enhancement
- Vocal tract length modification
- Natural breathiness addition
- Multiple voice presets
- Custom parameter controls
### Tips for Best Results:
1. Start with a clear audio recording
2. Try different presets to find the best match
3. For custom settings:
- Pitch shift: 6-8 for natural female voice
- Formant shift: 1.1-1.3 for feminine resonance
- Vocal tract length: 1.05-1.15 for realistic results
- Breathiness: 0.2-0.4 for natural sound
""") |