import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM, Embedding from tensorflow.keras.optimizers import Adam from tensorflow.keras.utils import to_categorical from tensorflow.keras.callbacks import EarlyStopping import gradio as gr # Initial data set data = [ "Double big 12", "Single big 11", "Single big 13", "Double big 12", "Double small 10", "Double big 12", "Double big 12", "Single small 7", "Single small 5", "Single small 9", "Single big 13", "Double small 8", "Single small 5", "Double big 14", "Single big 11", "Double big 14", "Single big 17", "Triple 9", "Double small 6", "Single big 13", "Double big 14", "Double small 8", "Double small 8", "Single big 13", "Single small 9", "Double small 8", "Double small 8", "Single big 12", "Double small 8", "Double big 14", "Double small 10", "Single big 13", "Single big 11", "Double big 14", "Double big 14" ] # Encoding the labels encoder = LabelEncoder() encoded_data = encoder.fit_transform(data) # Create sequences sequence_length = 5 X, y = [], [] for i in range(len(encoded_data) - sequence_length): X.append(encoded_data[i:i + sequence_length]) y.append(encoded_data[i + sequence_length]) X = np.array(X) y = to_categorical(y, num_classes=len(encoder.classes_)) # Build the model def build_model(vocab_size, sequence_length): model = Sequential([ Embedding(vocab_size, 50, input_length=sequence_length), LSTM(100), Dense(vocab_size, activation='softmax') ]) model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.001), metrics=['accuracy']) return model # Initialize the model vocab_size = len(encoder.classes_) model = build_model(vocab_size, sequence_length) # Train the model early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True) history = model.fit(X, y, epochs=100, validation_split=0.2, callbacks=[early_stopping], verbose=0) def predict_next(model, data, sequence_length, encoder): last_sequence = data[-sequence_length:] last_sequence = np.array(encoder.transform(last_sequence)).reshape((1, sequence_length)) prediction = model.predict(last_sequence) predicted_label = encoder.inverse_transform([np.argmax(prediction)]) return predicted_label[0] def update_data(data, new_outcome): data.append(new_outcome) return data def retrain_model(model, X, y, epochs=10): early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True) model.fit(X, y, epochs=epochs, validation_split=0.2, callbacks=[early_stopping], verbose=0) return model def gradio_predict(outcome): global data, model if outcome not in encoder.classes_: return "Invalid outcome. Please try again." data = update_data(data, outcome) if len(data) < sequence_length: return "Not enough data to make a prediction." predicted_next = predict_next(model, data, sequence_length, encoder) return f'Predicted next outcome: {predicted_next}' def gradio_update(actual_next): global data, X, y, model if actual_next not in encoder.classes_: return "Invalid outcome. Please try again." data = update_data(data, actual_next) if len(data) < sequence_length + 1: return "Not enough data to update the model." # Update X and y new_X = [] new_y = [] for i in range(len(data) - sequence_length): new_X.append(encoder.transform(data[i:i + sequence_length])) new_y.append(encoder.transform([data[i + sequence_length]])[0]) X = np.array(new_X) y = to_categorical(new_y, num_classes=len(encoder.classes_)) # Retrain the model model = retrain_model(model, X, y, epochs=10) return "Model updated with new data." # Gradio interface with gr.Blocks() as demo: gr.Markdown("## Outcome Prediction Model") with gr.Row(): outcome_input = gr.Textbox(label="Current Outcome") predict_button = gr.Button("Predict Next") predicted_output = gr.Textbox(label="Predicted Next Outcome") with gr.Row(): actual_input = gr.Textbox(label="Actual Next Outcome") update_button = gr.Button("Update Model") update_output = gr.Textbox(label="Update Status") predict_button.click(gradio_predict, inputs=outcome_input, outputs=predicted_output) update_button.click(gradio_update, inputs=actual_input, outputs=update_output) demo.launch()