Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from tensorflow.keras.models import Sequential, Model
|
6 |
+
from tensorflow.keras.layers import Dense, Dropout, Input, LayerNormalization, MultiHeadAttention, GlobalAveragePooling1D, Embedding, Layer, LSTM, Bidirectional, Conv1D
|
7 |
+
from tensorflow.keras.optimizers import Adam
|
8 |
+
from tensorflow.keras.utils import to_categorical
|
9 |
+
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
|
10 |
+
import tensorflow as tf
|
11 |
+
import optuna
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
# Combined data set
|
15 |
+
data = [
|
16 |
+
"Double big 12", "Single big 11", "Single big 13", "Double big 12", "Double small 10",
|
17 |
+
"Double big 12", "Double big 12", "Single small 7", "Single small 5", "Single small 9",
|
18 |
+
"Single big 13", "Double small 8", "Single small 5", "Double big 14", "Single big 11",
|
19 |
+
"Double big 14", "Single big 17", "Triple 9", "Double small 6", "Single big 13",
|
20 |
+
"Double big 14", "Double small 8", "Double small 8", "Single big 13", "Single small 9",
|
21 |
+
"Double small 8", "Double small 8", "Single big 12", "Double small 8", "Double big 14",
|
22 |
+
"Double small 10", "Single big 13", "Single big 11", "Double big 14", "Double big 14",
|
23 |
+
"Double small", "Single big", "Double big", "Single small", "Single small",
|
24 |
+
"Double small", "Single small", "Single small", "Double small", "Double small",
|
25 |
+
"Double big", "Single big", "Triple", "Double big", "Single big", "Single big",
|
26 |
+
"Double small", "Single small", "Double big", "Double small", "Double big",
|
27 |
+
"Single small", "Single big", "Double small", "Double big", "Double big",
|
28 |
+
"Double small", "Single big", "Double big", "Triple", "Single big", "Double small",
|
29 |
+
"Single big", "Single small", "Double small", "Single big", "Single big",
|
30 |
+
"Single big", "Double small", "Double small", "Single big", "Single small",
|
31 |
+
"Single big", "Single small", "Single small", "Double small", "Single small",
|
32 |
+
"Single big"
|
33 |
+
]
|
34 |
+
|
35 |
+
# Counting the data points
|
36 |
+
num_data_points = len(data)
|
37 |
+
print(f'Total number of data points: {num_data_points}')
|
38 |
+
|
39 |
+
# Encoding the labels
|
40 |
+
encoder = LabelEncoder()
|
41 |
+
encoded_data = encoder.fit_transform(data)
|
42 |
+
|
43 |
+
# Create sequences
|
44 |
+
sequence_length = 10
|
45 |
+
X, y = [], []
|
46 |
+
for i in range(len(encoded_data) - sequence_length):
|
47 |
+
X.append(encoded_data[i:i + sequence_length])
|
48 |
+
y.append(encoded_data[i + sequence_length])
|
49 |
+
|
50 |
+
X = np.array(X)
|
51 |
+
y = to_categorical(np.array(y), num_classes=len(encoder.classes_))
|
52 |
+
|
53 |
+
print(f'Input shape: {X.shape}')
|
54 |
+
print(f'Output shape: {y.shape}')
|
55 |
+
|
56 |
+
class TransformerBlock(Layer):
|
57 |
+
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
|
58 |
+
super(TransformerBlock, self).__init__()
|
59 |
+
self.att = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
|
60 |
+
self.ffn = Sequential([
|
61 |
+
Dense(ff_dim, activation="relu"),
|
62 |
+
Dense(embed_dim),
|
63 |
+
])
|
64 |
+
self.layernorm1 = LayerNormalization(epsilon=1e-6)
|
65 |
+
self.layernorm2 = LayerNormalization(epsilon=1e-6)
|
66 |
+
self.dropout1 = Dropout(rate)
|
67 |
+
self.dropout2 = Dropout(rate)
|
68 |
+
|
69 |
+
def call(self, inputs, training=False):
|
70 |
+
attn_output = self.att(inputs, inputs)
|
71 |
+
attn_output = self.dropout1(attn_output, training=training)
|
72 |
+
out1 = self.layernorm1(inputs + attn_output)
|
73 |
+
ffn_output = self.ffn(out1)
|
74 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
75 |
+
return self.layernorm2(out1 + ffn_output)
|
76 |
+
|
77 |
+
def build_model(trial):
|
78 |
+
embed_dim = trial.suggest_int('embed_dim', 64, 256, step=32)
|
79 |
+
num_heads = trial.suggest_int('num_heads', 2, 8, step=2)
|
80 |
+
ff_dim = trial.suggest_int('ff_dim', 128, 512, step=64)
|
81 |
+
rate = trial.suggest_float('dropout', 0.1, 0.5, step=0.1)
|
82 |
+
num_transformer_blocks = trial.suggest_int('num_transformer_blocks', 1, 3)
|
83 |
+
|
84 |
+
inputs = Input(shape=(sequence_length,))
|
85 |
+
embedding_layer = Embedding(input_dim=len(encoder.classes_), output_dim=embed_dim)
|
86 |
+
x = embedding_layer(inputs)
|
87 |
+
|
88 |
+
for _ in range(num_transformer_blocks):
|
89 |
+
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim, rate)
|
90 |
+
x = transformer_block(x)
|
91 |
+
|
92 |
+
x = Conv1D(128, 3, activation='relu')(x)
|
93 |
+
x = Bidirectional(LSTM(128, return_sequences=True))(x)
|
94 |
+
x = GlobalAveragePooling1D()(x)
|
95 |
+
x = Dropout(rate)(x)
|
96 |
+
x = Dense(ff_dim, activation="relu")(x)
|
97 |
+
x = Dropout(rate)(x)
|
98 |
+
outputs = Dense(len(encoder.classes_), activation="softmax")(x)
|
99 |
+
|
100 |
+
model = Model(inputs=inputs, outputs=outputs)
|
101 |
+
|
102 |
+
optimizer = Adam(learning_rate=trial.suggest_float('lr', 1e-5, 1e-2, log=True))
|
103 |
+
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
|
104 |
+
|
105 |
+
return model
|
106 |
+
|
107 |
+
def objective(trial):
|
108 |
+
model = build_model(trial)
|
109 |
+
|
110 |
+
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
|
111 |
+
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=1e-6)
|
112 |
+
|
113 |
+
history = model.fit(
|
114 |
+
X, y,
|
115 |
+
epochs=100,
|
116 |
+
batch_size=64,
|
117 |
+
validation_split=0.2,
|
118 |
+
callbacks=[early_stopping, reduce_lr],
|
119 |
+
verbose=0
|
120 |
+
)
|
121 |
+
|
122 |
+
val_accuracy = max(history.history['val_accuracy'])
|
123 |
+
return val_accuracy
|
124 |
+
|
125 |
+
# Initialize the model
|
126 |
+
study = optuna.create_study(direction='maximize')
|
127 |
+
study.optimize(lambda trial: objective(trial), n_trials=10)
|
128 |
+
best_trial = study.best_trial
|
129 |
+
print(f'Best hyperparameters: {best_trial.params}')
|
130 |
+
|
131 |
+
best_model = build_model(best_trial)
|
132 |
+
early_stopping = EarlyStopping(monitor='val_loss', patience=20, restore_best_weights=True)
|
133 |
+
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=10, min_lr=1e-6)
|
134 |
+
|
135 |
+
history = best_model.fit(
|
136 |
+
X, y,
|
137 |
+
epochs=500,
|
138 |
+
batch_size=64,
|
139 |
+
validation_split=0.2,
|
140 |
+
callbacks=[early_stopping, reduce_lr],
|
141 |
+
verbose=2
|
142 |
+
)
|
143 |
+
|
144 |
+
def predict_next(model, data, sequence_length, encoder):
|
145 |
+
last_sequence = data[-sequence_length:]
|
146 |
+
last_sequence = np.array(encoder.transform(last_sequence)).reshape((1, sequence_length))
|
147 |
+
prediction = model.predict(last_sequence)
|
148 |
+
predicted_label = encoder.inverse_transform([np.argmax(prediction)])
|
149 |
+
return predicted_label[0]
|
150 |
+
|
151 |
+
def update_data(data, new_outcome):
|
152 |
+
data.append(new_outcome)
|
153 |
+
if len(data) > sequence_length:
|
154 |
+
data.pop(0)
|
155 |
+
return data
|
156 |
+
|
157 |
+
def retrain_model(model, X, y, epochs=10):
|
158 |
+
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
159 |
+
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=1e-6)
|
160 |
+
|
161 |
+
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
|
162 |
+
|
163 |
+
model.fit(
|
164 |
+
X_train, y_train,
|
165 |
+
epochs=epochs,
|
166 |
+
batch_size=64,
|
167 |
+
validation_data=(X_val, y_val),
|
168 |
+
callbacks=[early_stopping, reduce_lr],
|
169 |
+
verbose=0
|
170 |
+
)
|
171 |
+
return model
|
172 |
+
|
173 |
+
def gradio_predict(outcome):
|
174 |
+
global data, best_model
|
175 |
+
|
176 |
+
if outcome not in encoder.classes_:
|
177 |
+
return "Invalid outcome. Please try again."
|
178 |
+
|
179 |
+
data = update_data(data, outcome)
|
180 |
+
|
181 |
+
if len(data) < sequence_length:
|
182 |
+
return "Not enough data to make a prediction."
|
183 |
+
|
184 |
+
predicted_next = predict_next(best_model, data, sequence_length, encoder)
|
185 |
+
return f'Predicted next outcome: {predicted_next}'
|
186 |
+
|
187 |
+
def gradio_update(actual_next):
|
188 |
+
global data, X, y, best_model
|
189 |
+
|
190 |
+
if actual_next not in encoder.classes_:
|
191 |
+
return "Invalid outcome. Please try again."
|
192 |
+
|
193 |
+
data = update_data(data, actual_next)
|
194 |
+
|
195 |
+
if len(data) < sequence_length + 1:
|
196 |
+
return "Not enough data to update the model."
|
197 |
+
|
198 |
+
# Update X and y
|
199 |
+
new_X = encoder.transform(data[-sequence_length-1:-1]).reshape(1, -1)
|
200 |
+
new_y = to_categorical(encoder.transform([data[-1]]), num_classes=len(encoder.classes_))
|
201 |
+
|
202 |
+
X = np.vstack([X, new_X])
|
203 |
+
y = np.vstack([y, new_y])
|
204 |
+
|
205 |
+
# Retrain the model
|
206 |
+
best_model = retrain_model(best_model, X, y, epochs=10)
|
207 |
+
|
208 |
+
return "Model updated with new data."
|
209 |
+
|
210 |
+
# Gradio interface
|
211 |
+
with gr.Blocks() as demo:
|
212 |
+
gr.Markdown("## Outcome Prediction with Enhanced Transformer")
|
213 |
+
with gr.Row():
|
214 |
+
outcome_input = gr.Textbox(label="Current Outcome")
|
215 |
+
predict_button = gr.Button("Predict Next")
|
216 |
+
predicted_output = gr.Textbox(label="Predicted Next Outcome")
|
217 |
+
with gr.Row():
|
218 |
+
actual_input = gr.Textbox(label="Actual Next Outcome")
|
219 |
+
update_button = gr.Button("Update Model")
|
220 |
+
update_output = gr.Textbox(label="Update Status")
|
221 |
+
|
222 |
+
predict_button.click(gradio_predict, inputs=outcome_input, outputs=predicted_output)
|
223 |
+
update_button.click(gradio_update, inputs=actual_input, outputs=update_output)
|
224 |
+
|
225 |
+
demo.launch()
|