Update goai_helpers/goai_traduction.py
Browse files- goai_helpers/goai_traduction.py +41 -20
goai_helpers/goai_traduction.py
CHANGED
@@ -12,7 +12,7 @@ login(token=auth_token)
|
|
12 |
|
13 |
|
14 |
@spaces.GPU
|
15 |
-
def
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
if src_lang == "fra_Latn" and tgt_lang == "mos_Latn":
|
@@ -22,38 +22,59 @@ def goai_traduction(text, src_lang, tgt_lang):
|
|
22 |
else:
|
23 |
model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-fr-to-mos-V4"
|
24 |
|
|
|
25 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=auth_token)
|
26 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, token=auth_token).to(device)
|
27 |
-
|
28 |
print(f"Texte brut ({len(text)} caractères / {len(text.split())} mots):")
|
29 |
print(text)
|
30 |
-
|
31 |
-
print(
|
32 |
-
print(
|
|
|
|
|
|
|
33 |
# Configuration du tokenizer
|
34 |
tokenizer.src_lang = src_lang
|
35 |
|
36 |
# Tokenisation
|
37 |
inputs = tokenizer(text, return_tensors="pt", truncation=False).to(device)
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# ID du token de langue cible
|
41 |
tgt_lang_id = tokenizer.convert_tokens_to_ids(tgt_lang)
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
return translation
|
58 |
|
59 |
def real_time_traduction(input_text, src_lang, tgt_lang):
|
|
|
12 |
|
13 |
|
14 |
@spaces.GPU
|
15 |
+
def goai_traduction_debug(text, src_lang, tgt_lang):
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
if src_lang == "fra_Latn" and tgt_lang == "mos_Latn":
|
|
|
22 |
else:
|
23 |
model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-fr-to-mos-V4"
|
24 |
|
25 |
+
print(f"Chargement du modèle: {model_id}")
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=auth_token)
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, token=auth_token).to(device)
|
28 |
+
|
29 |
print(f"Texte brut ({len(text)} caractères / {len(text.split())} mots):")
|
30 |
print(text)
|
31 |
+
|
32 |
+
print(f"Configuration du modèle:")
|
33 |
+
print(f"- tokenizer.model_max_length: {tokenizer.model_max_length}")
|
34 |
+
print(f"- Position embeddings shape: {model.model.encoder.embed_positions.weights.shape}")
|
35 |
+
print(f"- decoder.embed_positions shape: {model.model.decoder.embed_positions.weights.shape}")
|
36 |
+
|
37 |
# Configuration du tokenizer
|
38 |
tokenizer.src_lang = src_lang
|
39 |
|
40 |
# Tokenisation
|
41 |
inputs = tokenizer(text, return_tensors="pt", truncation=False).to(device)
|
42 |
+
input_ids = inputs["input_ids"][0]
|
43 |
+
|
44 |
+
print("Tokens d'entrée:")
|
45 |
+
print(f"- Nombre de tokens: {input_ids.shape[0]}")
|
46 |
+
print(f"- Premiers tokens: {input_ids[:10].tolist()}")
|
47 |
+
print(f"- Derniers tokens: {input_ids[-10:].tolist()}")
|
48 |
|
49 |
# ID du token de langue cible
|
50 |
tgt_lang_id = tokenizer.convert_tokens_to_ids(tgt_lang)
|
51 |
+
print(f"Token ID de la langue cible ({tgt_lang}): {tgt_lang_id}")
|
52 |
|
53 |
+
for length_penalty in [1.0, 1.5, 2.0]:
|
54 |
+
for num_beams in [5, 8]:
|
55 |
+
print(f"\nTest avec length_penalty={length_penalty}, num_beams={num_beams}")
|
56 |
+
|
57 |
+
|
58 |
+
outputs = model.generate(
|
59 |
+
**inputs,
|
60 |
+
forced_bos_token_id=tgt_lang_id,
|
61 |
+
max_new_tokens=2048,
|
62 |
+
early_stopping=False,
|
63 |
+
num_beams=num_beams,
|
64 |
+
no_repeat_ngram_size=0,
|
65 |
+
length_penalty=length_penalty
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
translation = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
70 |
+
|
71 |
+
print(f"Traduction ({len(translation)} caractères / {len(translation.split())} mots):")
|
72 |
+
print(translation)
|
73 |
+
output_ids = outputs[0]
|
74 |
+
print(f"- Nombre de tokens générés: {output_ids.shape[0]}")
|
75 |
+
print(f"- Premiers tokens générés: {output_ids[:10].tolist()}")
|
76 |
+
print(f"- Derniers tokens générés: {output_ids[-10:].tolist()}")
|
77 |
+
|
78 |
return translation
|
79 |
|
80 |
def real_time_traduction(input_text, src_lang, tgt_lang):
|