|
import torch |
|
import spaces |
|
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer |
|
import os |
|
from huggingface_hub import login |
|
|
|
max_length = 512 |
|
auth_token = os.getenv('HF_SPACE_TOKEN') |
|
login(token=auth_token) |
|
|
|
|
|
@spaces.GPU |
|
def goai_traduction(text, src_lang, tgt_lang): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
if src_lang == "fra_Latn" and tgt_lang == "mos_Latn": |
|
model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-fr-to-mos-V4" |
|
|
|
elif src_lang == "mos_Latn" and tgt_lang == "fra_Latn": |
|
model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-mos-to-fr-V5" |
|
|
|
else: |
|
model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-fr-to-mos-V4" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token=auth_token) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, token=auth_token) |
|
|
|
trans_pipe = pipeline("translation", |
|
model=model, tokenizer=tokenizer, |
|
src_lang=src_lang, tgt_lang=tgt_lang, |
|
max_length=max_length, |
|
device=device |
|
) |
|
|
|
return trans_pipe(text)[0]["translation_text"] |
|
|