Spaces:
Running
Running
Error: Too many output
Browse files- src/parsers/got_ocr_parser.py +65 -49
src/parsers/got_ocr_parser.py
CHANGED
@@ -21,7 +21,8 @@ class GotOcrParser(DocumentParser):
|
|
21 |
"""
|
22 |
|
23 |
_model = None
|
24 |
-
|
|
|
25 |
|
26 |
@classmethod
|
27 |
def get_name(cls) -> str:
|
@@ -67,19 +68,13 @@ class GotOcrParser(DocumentParser):
|
|
67 |
@classmethod
|
68 |
def _load_model(cls):
|
69 |
"""Load the GOT-OCR model and tokenizer if not already loaded."""
|
70 |
-
if cls._model is None or cls.
|
71 |
try:
|
72 |
# Import dependencies inside the method to avoid global import errors
|
73 |
import torch
|
74 |
-
from transformers import
|
75 |
|
76 |
-
logger.info("Loading GOT-OCR model and
|
77 |
-
|
78 |
-
# Load tokenizer
|
79 |
-
cls._tokenizer = AutoTokenizer.from_pretrained(
|
80 |
-
'stepfun-ai/GOT-OCR2_0',
|
81 |
-
trust_remote_code=True
|
82 |
-
)
|
83 |
|
84 |
# Determine device
|
85 |
device_map = 'cuda' if torch.cuda.is_available() else 'auto'
|
@@ -88,15 +83,17 @@ class GotOcrParser(DocumentParser):
|
|
88 |
else:
|
89 |
logger.warning("Using CPU for model inference (not recommended)")
|
90 |
|
|
|
|
|
|
|
|
|
|
|
91 |
# Load model with explicit float16 for T4 compatibility
|
92 |
-
cls._model =
|
93 |
-
'stepfun-ai/GOT-OCR2_0',
|
94 |
-
trust_remote_code=True,
|
95 |
low_cpu_mem_usage=True,
|
96 |
device_map=device_map,
|
97 |
-
|
98 |
-
torch_dtype=torch.float16, # Force float16 for T4 compatibility
|
99 |
-
pad_token_id=cls._tokenizer.eos_token_id
|
100 |
)
|
101 |
|
102 |
# Explicitly convert model to half precision (float16)
|
@@ -107,7 +104,6 @@ class GotOcrParser(DocumentParser):
|
|
107 |
cls._model = cls._model.cuda()
|
108 |
|
109 |
# Patch torch.autocast to force float16 instead of bfloat16
|
110 |
-
# This fixes the issue in the model's chat method (line 581)
|
111 |
original_autocast = torch.autocast
|
112 |
def patched_autocast(*args, **kwargs):
|
113 |
# Force dtype to float16 when CUDA is involved
|
@@ -123,7 +119,7 @@ class GotOcrParser(DocumentParser):
|
|
123 |
return True
|
124 |
except Exception as e:
|
125 |
cls._model = None
|
126 |
-
cls.
|
127 |
logger.error(f"Failed to load GOT-OCR model: {str(e)}")
|
128 |
return False
|
129 |
return True
|
@@ -138,9 +134,9 @@ class GotOcrParser(DocumentParser):
|
|
138 |
del cls._model
|
139 |
cls._model = None
|
140 |
|
141 |
-
if cls.
|
142 |
-
del cls.
|
143 |
-
cls.
|
144 |
|
145 |
# Clear CUDA cache if available
|
146 |
if torch.cuda.is_available():
|
@@ -175,6 +171,7 @@ class GotOcrParser(DocumentParser):
|
|
175 |
|
176 |
# Import torch here to ensure it's available
|
177 |
import torch
|
|
|
178 |
|
179 |
# Validate file path and extension
|
180 |
file_path = Path(file_path)
|
@@ -187,31 +184,43 @@ class GotOcrParser(DocumentParser):
|
|
187 |
f"Received file with extension: {file_path.suffix}"
|
188 |
)
|
189 |
|
190 |
-
# Determine
|
191 |
-
|
192 |
-
logger.info(f"Using OCR method: {
|
193 |
|
194 |
# Process the image
|
195 |
try:
|
196 |
logger.info(f"Processing image with GOT-OCR: {file_path}")
|
197 |
|
|
|
|
|
|
|
198 |
# First attempt: Normal processing with autocast
|
199 |
try:
|
200 |
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
|
201 |
-
#
|
202 |
-
if
|
203 |
-
|
204 |
-
self._tokenizer,
|
205 |
-
str(file_path),
|
206 |
-
ocr_type='format'
|
207 |
-
)
|
208 |
else:
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
except RuntimeError as e:
|
216 |
# Check if it's a bfloat16 error
|
217 |
if "bfloat16" in str(e) or "BFloat16" in str(e):
|
@@ -227,19 +236,26 @@ class GotOcrParser(DocumentParser):
|
|
227 |
torch.set_default_dtype(torch.float16)
|
228 |
|
229 |
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
|
230 |
-
#
|
231 |
-
if
|
232 |
-
|
233 |
-
self._tokenizer,
|
234 |
-
str(file_path),
|
235 |
-
ocr_type='format'
|
236 |
-
)
|
237 |
else:
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
# Restore default dtype
|
245 |
torch.set_default_dtype(original_dtype)
|
|
|
21 |
"""
|
22 |
|
23 |
_model = None
|
24 |
+
_processor = None
|
25 |
+
_stop_str = "<|im_end|>"
|
26 |
|
27 |
@classmethod
|
28 |
def get_name(cls) -> str:
|
|
|
68 |
@classmethod
|
69 |
def _load_model(cls):
|
70 |
"""Load the GOT-OCR model and tokenizer if not already loaded."""
|
71 |
+
if cls._model is None or cls._processor is None:
|
72 |
try:
|
73 |
# Import dependencies inside the method to avoid global import errors
|
74 |
import torch
|
75 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
76 |
|
77 |
+
logger.info("Loading GOT-OCR model and processor...")
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
# Determine device
|
80 |
device_map = 'cuda' if torch.cuda.is_available() else 'auto'
|
|
|
83 |
else:
|
84 |
logger.warning("Using CPU for model inference (not recommended)")
|
85 |
|
86 |
+
# Load the processor (includes tokenizer)
|
87 |
+
cls._processor = AutoProcessor.from_pretrained(
|
88 |
+
'stepfun-ai/GOT-OCR2_0-hf'
|
89 |
+
)
|
90 |
+
|
91 |
# Load model with explicit float16 for T4 compatibility
|
92 |
+
cls._model = AutoModelForImageTextToText.from_pretrained(
|
93 |
+
'stepfun-ai/GOT-OCR2_0-hf',
|
|
|
94 |
low_cpu_mem_usage=True,
|
95 |
device_map=device_map,
|
96 |
+
torch_dtype=torch.float16 # Force float16 for T4 compatibility
|
|
|
|
|
97 |
)
|
98 |
|
99 |
# Explicitly convert model to half precision (float16)
|
|
|
104 |
cls._model = cls._model.cuda()
|
105 |
|
106 |
# Patch torch.autocast to force float16 instead of bfloat16
|
|
|
107 |
original_autocast = torch.autocast
|
108 |
def patched_autocast(*args, **kwargs):
|
109 |
# Force dtype to float16 when CUDA is involved
|
|
|
119 |
return True
|
120 |
except Exception as e:
|
121 |
cls._model = None
|
122 |
+
cls._processor = None
|
123 |
logger.error(f"Failed to load GOT-OCR model: {str(e)}")
|
124 |
return False
|
125 |
return True
|
|
|
134 |
del cls._model
|
135 |
cls._model = None
|
136 |
|
137 |
+
if cls._processor is not None:
|
138 |
+
del cls._processor
|
139 |
+
cls._processor = None
|
140 |
|
141 |
# Clear CUDA cache if available
|
142 |
if torch.cuda.is_available():
|
|
|
171 |
|
172 |
# Import torch here to ensure it's available
|
173 |
import torch
|
174 |
+
from transformers.image_utils import load_image
|
175 |
|
176 |
# Validate file path and extension
|
177 |
file_path = Path(file_path)
|
|
|
184 |
f"Received file with extension: {file_path.suffix}"
|
185 |
)
|
186 |
|
187 |
+
# Determine format flag based on OCR method
|
188 |
+
format_flag = ocr_method == "format"
|
189 |
+
logger.info(f"Using OCR method: {'format' if format_flag else 'plain'}")
|
190 |
|
191 |
# Process the image
|
192 |
try:
|
193 |
logger.info(f"Processing image with GOT-OCR: {file_path}")
|
194 |
|
195 |
+
# Load image with transformers utils
|
196 |
+
image = load_image(str(file_path))
|
197 |
+
|
198 |
# First attempt: Normal processing with autocast
|
199 |
try:
|
200 |
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
|
201 |
+
# Process image with format flag if needed
|
202 |
+
if format_flag:
|
203 |
+
inputs = self._processor(image, return_tensors="pt", format=True).to("cuda")
|
|
|
|
|
|
|
|
|
204 |
else:
|
205 |
+
inputs = self._processor(image, return_tensors="pt").to("cuda")
|
206 |
+
|
207 |
+
# Generate text
|
208 |
+
generate_ids = self._model.generate(
|
209 |
+
**inputs,
|
210 |
+
do_sample=False,
|
211 |
+
tokenizer=self._processor.tokenizer,
|
212 |
+
stop_strings=self._stop_str,
|
213 |
+
max_new_tokens=4096,
|
214 |
+
)
|
215 |
+
|
216 |
+
# Decode the generated text
|
217 |
+
result = self._processor.decode(
|
218 |
+
generate_ids[0, inputs["input_ids"].shape[1]:],
|
219 |
+
skip_special_tokens=True,
|
220 |
+
)
|
221 |
+
|
222 |
+
return result
|
223 |
+
|
224 |
except RuntimeError as e:
|
225 |
# Check if it's a bfloat16 error
|
226 |
if "bfloat16" in str(e) or "BFloat16" in str(e):
|
|
|
236 |
torch.set_default_dtype(torch.float16)
|
237 |
|
238 |
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
|
239 |
+
# Process image with format flag if needed
|
240 |
+
if format_flag:
|
241 |
+
inputs = self._processor(image, return_tensors="pt", format=True).to("cuda")
|
|
|
|
|
|
|
|
|
242 |
else:
|
243 |
+
inputs = self._processor(image, return_tensors="pt").to("cuda")
|
244 |
+
|
245 |
+
# Generate text
|
246 |
+
generate_ids = self._model.generate(
|
247 |
+
**inputs,
|
248 |
+
do_sample=False,
|
249 |
+
tokenizer=self._processor.tokenizer,
|
250 |
+
stop_strings=self._stop_str,
|
251 |
+
max_new_tokens=4096,
|
252 |
+
)
|
253 |
+
|
254 |
+
# Decode the generated text
|
255 |
+
result = self._processor.decode(
|
256 |
+
generate_ids[0, inputs["input_ids"].shape[1]:],
|
257 |
+
skip_special_tokens=True,
|
258 |
+
)
|
259 |
|
260 |
# Restore default dtype
|
261 |
torch.set_default_dtype(original_dtype)
|