Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,726 Bytes
575f1c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
"""Chat history and memory management for RAG conversations."""
import json
import os
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime
from pathlib import Path
from dataclasses import dataclass, asdict
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from src.core.config import config
from src.core.logging_config import get_logger
logger = get_logger(__name__)
@dataclass
class ChatMessage:
"""Represents a single chat message."""
role: str # "user" or "assistant"
content: str
timestamp: str
sources: Optional[List[str]] = None # Source documents used for the response
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary."""
return asdict(self)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ChatMessage':
"""Create from dictionary."""
return cls(**data)
@dataclass
class ChatSession:
"""Represents a chat session with history."""
session_id: str
created_at: str
updated_at: str
messages: List[ChatMessage]
document_sources: List[str] # Documents available in this session
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary."""
return {
"session_id": self.session_id,
"created_at": self.created_at,
"updated_at": self.updated_at,
"messages": [msg.to_dict() for msg in self.messages],
"document_sources": self.document_sources
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ChatSession':
"""Create from dictionary."""
messages = [ChatMessage.from_dict(msg) for msg in data.get("messages", [])]
return cls(
session_id=data["session_id"],
created_at=data["created_at"],
updated_at=data["updated_at"],
messages=messages,
document_sources=data.get("document_sources", [])
)
class ChatMemoryManager:
"""Manages chat history and memory for RAG conversations."""
def __init__(self, persist_directory: Optional[str] = None):
"""
Initialize the chat memory manager.
Args:
persist_directory: Directory to persist chat history
"""
if persist_directory is None:
persist_directory = config.rag.chat_history_path
self.persist_directory = Path(persist_directory)
self.persist_directory.mkdir(parents=True, exist_ok=True)
self.current_session: Optional[ChatSession] = None
logger.info(f"ChatMemoryManager initialized with persist_directory={self.persist_directory}")
def create_session(self, document_sources: Optional[List[str]] = None) -> str:
"""
Create a new chat session.
Args:
document_sources: List of document sources available for this session
Returns:
Session ID
"""
session_id = f"session_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
now = datetime.now().isoformat()
self.current_session = ChatSession(
session_id=session_id,
created_at=now,
updated_at=now,
messages=[],
document_sources=document_sources or []
)
logger.info(f"Created new chat session: {session_id}")
return session_id
def add_message(self, role: str, content: str, sources: Optional[List[str]] = None) -> None:
"""
Add a message to the current session.
Args:
role: "user" or "assistant"
content: Message content
sources: Source documents used (for assistant messages)
"""
if self.current_session is None:
self.create_session()
message = ChatMessage(
role=role,
content=content,
timestamp=datetime.now().isoformat(),
sources=sources
)
self.current_session.messages.append(message)
self.current_session.updated_at = datetime.now().isoformat()
logger.info(f"Added {role} message to session {self.current_session.session_id}")
def get_conversation_history(self, max_messages: Optional[int] = None) -> List[Tuple[str, str]]:
"""
Get conversation history in Gradio chat format.
Args:
max_messages: Maximum number of messages to return
Returns:
List of (user_message, assistant_message) tuples
"""
if not self.current_session or not self.current_session.messages:
return []
messages = self.current_session.messages
if max_messages:
messages = messages[-max_messages:]
# Group messages into pairs
history = []
user_msg = None
for msg in messages:
if msg.role == "user":
user_msg = msg.content
elif msg.role == "assistant" and user_msg is not None:
history.append((user_msg, msg.content))
user_msg = None
return history
def get_context_messages(self, max_context_length: int = 4000) -> List[BaseMessage]:
"""
Get recent messages formatted for LangChain context.
Args:
max_context_length: Maximum context length in characters
Returns:
List of LangChain message objects
"""
if not self.current_session or not self.current_session.messages:
return []
context_messages = []
current_length = 0
# Start from the most recent messages and work backwards
for msg in reversed(self.current_session.messages):
msg_length = len(msg.content)
if current_length + msg_length > max_context_length:
break
if msg.role == "user":
context_messages.insert(0, HumanMessage(content=msg.content))
elif msg.role == "assistant":
context_messages.insert(0, AIMessage(content=msg.content))
current_length += msg_length
logger.info(f"Retrieved {len(context_messages)} context messages ({current_length} chars)")
return context_messages
def save_session(self) -> bool:
"""
Save the current session to disk.
Returns:
True if successful, False otherwise
"""
if not self.current_session:
return False
try:
session_file = self.persist_directory / f"{self.current_session.session_id}.json"
with open(session_file, 'w', encoding='utf-8') as f:
json.dump(self.current_session.to_dict(), f, indent=2, ensure_ascii=False)
logger.info(f"Saved session {self.current_session.session_id}")
return True
except Exception as e:
logger.error(f"Error saving session: {e}")
return False
def load_session(self, session_id: str) -> bool:
"""
Load a session from disk.
Args:
session_id: Session ID to load
Returns:
True if successful, False otherwise
"""
try:
session_file = self.persist_directory / f"{session_id}.json"
if not session_file.exists():
logger.warning(f"Session file not found: {session_id}")
return False
with open(session_file, 'r', encoding='utf-8') as f:
session_data = json.load(f)
self.current_session = ChatSession.from_dict(session_data)
logger.info(f"Loaded session {session_id}")
return True
except Exception as e:
logger.error(f"Error loading session {session_id}: {e}")
return False
def list_sessions(self) -> List[Dict[str, Any]]:
"""
List all saved sessions.
Returns:
List of session metadata
"""
sessions = []
try:
for session_file in self.persist_directory.glob("session_*.json"):
try:
with open(session_file, 'r', encoding='utf-8') as f:
session_data = json.load(f)
sessions.append({
"session_id": session_data["session_id"],
"created_at": session_data["created_at"],
"updated_at": session_data["updated_at"],
"message_count": len(session_data.get("messages", [])),
"document_sources": session_data.get("document_sources", [])
})
except Exception as e:
logger.warning(f"Error reading session file {session_file}: {e}")
except Exception as e:
logger.error(f"Error listing sessions: {e}")
# Sort by updated_at (most recent first)
sessions.sort(key=lambda x: x["updated_at"], reverse=True)
return sessions
def clear_current_session(self) -> None:
"""Clear the current session."""
self.current_session = None
logger.info("Cleared current session")
# Global chat memory manager instance
chat_memory_manager = ChatMemoryManager() |