Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,545 Bytes
575f1c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
"""Embedding model management for RAG functionality."""
import os
from typing import Optional
from langchain_openai import OpenAIEmbeddings
from src.core.config import config
from src.core.logging_config import get_logger
logger = get_logger(__name__)
class EmbeddingManager:
"""Manages embedding models for document vectorization."""
def __init__(self):
self._embedding_model: Optional[OpenAIEmbeddings] = None
def get_embedding_model(self) -> OpenAIEmbeddings:
"""Get or create the OpenAI embedding model."""
if self._embedding_model is None:
try:
# Get OpenAI API key from config/environment
openai_api_key = config.api.openai_api_key or os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("OpenAI API key not found. Please set OPENAI_API_KEY in environment variables.")
self._embedding_model = OpenAIEmbeddings(
model="text-embedding-3-small",
openai_api_key=openai_api_key,
chunk_size=1000, # Process documents in chunks
max_retries=3,
timeout=30
)
logger.info("OpenAI embedding model initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize OpenAI embedding model: {e}")
raise
return self._embedding_model
def test_embedding_model(self) -> bool:
"""Test if the embedding model is working correctly."""
try:
embedding_model = self.get_embedding_model()
# Test with a simple text
test_text = "This is a test for embedding functionality."
embedding = embedding_model.embed_query(test_text)
# Check if we got a valid embedding (list of floats)
if isinstance(embedding, list) and len(embedding) > 0 and isinstance(embedding[0], float):
logger.info("Embedding model test successful")
return True
else:
logger.error("Embedding model test failed: Invalid embedding format")
return False
except Exception as e:
logger.error(f"Embedding model test failed: {e}")
return False
# Global embedding manager instance
embedding_manager = EmbeddingManager() |