File size: 24,074 Bytes
98482ce
 
 
 
 
 
c0c51c2
98482ce
 
 
 
 
c0c51c2
 
98482ce
 
 
 
 
 
 
 
c0c51c2
 
98482ce
c0c51c2
 
 
98482ce
 
 
 
 
 
033e4ba
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c51c2
 
98482ce
c0c51c2
 
98482ce
 
 
 
c0c51c2
98482ce
 
 
 
c0c51c2
 
 
98482ce
 
 
 
 
 
 
 
 
c0c51c2
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
c0c51c2
 
 
98482ce
 
c0c51c2
 
98482ce
 
 
 
 
4a97b0c
 
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c51c2
 
98482ce
 
 
4a97b0c
 
98482ce
4a97b0c
 
98482ce
 
 
c0c51c2
4a97b0c
c0c51c2
 
98482ce
 
4a97b0c
98482ce
 
 
 
 
 
 
 
 
 
 
c0c51c2
 
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c51c2
98482ce
c0c51c2
98482ce
 
 
c0c51c2
 
 
98482ce
c0c51c2
 
98482ce
 
 
 
4a97b0c
 
 
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f1c9e
 
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c51c2
98482ce
 
 
 
 
 
 
 
 
 
 
a4f1c9e
 
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c51c2
 
98482ce
 
4a97b0c
98482ce
4a97b0c
98482ce
4a97b0c
 
 
98482ce
 
 
 
 
 
 
4a97b0c
 
98482ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c51c2
d437733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97b0c
d437733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98482ce
d437733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98482ce
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from pathlib import Path
from typing import Dict, List, Optional, Any, Union
import os
import base64
import tempfile
import json
import logging
from PIL import Image
import io

from src.parsers.parser_interface import DocumentParser
from src.parsers.parser_registry import ParserRegistry
from src.core.config import config
from src.core.exceptions import DocumentProcessingError, ConversionError

# Import the Mistral AI client
try:
    from mistralai import Mistral
    MISTRAL_AVAILABLE = True
except ImportError:
    MISTRAL_AVAILABLE = False

# Get logger
logger = logging.getLogger(__name__)

# Check if API key is available and log a message if not
if not config.api.mistral_api_key:
    logger.warning("MISTRAL_API_KEY environment variable not found. Mistral OCR parser may not work.")

class MistralOcrParser(DocumentParser):
    """Parser that uses Mistral OCR to convert documents to markdown."""

    @classmethod
    def get_name(cls) -> str:
        return "Mistral OCR"

    @classmethod
    def get_supported_ocr_methods(cls) -> List[Dict[str, Any]]:
        return [
            {
                "id": "ocr",
                "name": "OCR Only",
                "default_params": {}
            },
            {
                "id": "understand",
                "name": "Document Understanding",
                "default_params": {}
            }
        ]
    
    @classmethod
    def get_description(cls) -> str:
        return "Mistral OCR parser for extracting text from documents and images with optional document understanding"
    
    def encode_image(self, image_path):
        """Encode the image to base64."""
        try:
            with open(image_path, "rb") as image_file:
                return base64.b64encode(image_file.read()).decode('utf-8')
        except FileNotFoundError:
            logger.error(f"File not found: {image_path}")
            raise DocumentProcessingError(f"File not found: {image_path}")
        except Exception as e:
            logger.error(f"Error encoding file {image_path}: {e}")
            raise DocumentProcessingError(f"Error encoding file: {e}")
    
    def parse(self, file_path: Union[str, Path], ocr_method: Optional[str] = None, **kwargs) -> str:
        """Parse a document using Mistral OCR."""
        if not MISTRAL_AVAILABLE:
            raise DocumentProcessingError(
                "The Mistral AI client is not installed. "
                "Please install it with 'pip install mistralai'."
            )
        
        # Use the API key from centralized config
        if not config.api.mistral_api_key:
            raise DocumentProcessingError(
                "MISTRAL_API_KEY environment variable is not set. "
                "Please set it to your Mistral API key."
            )
        
        # Check the OCR method
        use_document_understanding = ocr_method == "understand"
        
        try:
            # Initialize the Mistral client
            client = Mistral(api_key=config.api.mistral_api_key)
            
            # Determine file type based on extension
            file_path = Path(file_path)
            file_extension = file_path.suffix.lower()
            
            # Process the document with OCR
            if use_document_understanding:
                # Use document understanding via chat API for enhanced extraction
                return self._extract_with_document_understanding(client, file_path, file_extension)
            else:
                # Use regular OCR for basic text extraction
                return self._extract_with_ocr(client, file_path, file_extension)
            
        except (DocumentProcessingError, ConversionError):
            # Re-raise our custom exceptions
            raise
        except Exception as e:
            error_message = f"Error parsing document with Mistral OCR: {str(e)}"
            logger.error(error_message)
            raise DocumentProcessingError(error_message)
    
    def _extract_with_ocr(self, client, file_path, file_extension):
        """Extract document content using basic OCR."""
        try:
            # Process according to file type
            if file_extension in ['.pdf', '.docx', '.pptx']:
                # For documents (PDF, DOCX, PPTX), we need to upload the file to the Mistral API first
                try:
                    # Upload the file to Mistral API
                    uploaded_pdf = client.files.upload(
                        file={
                            "file_name": file_path.name,
                            "content": open(file_path, "rb"),
                        },
                        purpose="ocr"
                    )
                    
                    # Get signed URL for the file
                    signed_url = client.files.get_signed_url(file_id=uploaded_pdf.id)
                    
                    # Use the signed URL for OCR processing
                    ocr_response = client.ocr.process(
                        model="mistral-ocr-latest",
                        document={
                            "type": "document_url",
                            "document_url": signed_url.url
                        },
                        include_image_base64=True
                    )
                except Exception as e:
                    # If file upload fails, try to use a direct URL method with base64
                    logger.warning(f"Failed to upload document, trying alternate method: {str(e)}")
                    base64_doc = self.encode_image(file_path)
                    
                    if base64_doc:
                        mime_type = self._get_mime_type(file_extension)
                        ocr_response = client.ocr.process(
                            model="mistral-ocr-latest",
                            document={
                                "type": "document_url",
                                "document_url": f"data:{mime_type};base64,{base64_doc}"
                            },
                            include_image_base64=True
                        )
                    else:
                        raise DocumentProcessingError("Failed to process document")
            else:
                # For images (jpg, png, etc.), use image_url with base64
                base64_image = self.encode_image(file_path)
                
                mime_type = self._get_mime_type(file_extension)
                
                ocr_response = client.ocr.process(
                    model="mistral-ocr-latest",
                    document={
                        "type": "image_url",
                        "image_url": f"data:{mime_type};base64,{base64_image}"
                    },
                    include_image_base64=True
                )
            
            # Process the OCR response
            # The Mistral OCR response is structured with pages that contain text content
            markdown_text = ""
            
            # Check if the response contains pages
            if hasattr(ocr_response, 'pages') and ocr_response.pages:
                for page in ocr_response.pages:
                    # Add page number as heading
                    page_num = page.index if hasattr(page, 'index') else "Unknown"
                    markdown_text += f"## Page {page_num}\n\n"
                    
                    # Add text content if available
                    if hasattr(page, 'text'):
                        markdown_text += page.text + "\n\n"
                    
                    # Or markdown content if that's how it's structured
                    elif hasattr(page, 'markdown'):
                        markdown_text += page.markdown + "\n\n"
                    
                    # Add any extracted tables with markdown formatting
                    if hasattr(page, 'tables') and page.tables:
                        for i, table in enumerate(page.tables):
                            markdown_text += f"### Table {i+1}\n\n"
                            if hasattr(table, 'markdown'):
                                markdown_text += table.markdown + "\n\n"
                            elif hasattr(table, 'data'):
                                # Convert table data to markdown format
                                markdown_text += self._convert_table_to_markdown(table.data) + "\n\n"
            
            # If no markdown was generated, check for raw content
            if not markdown_text and hasattr(ocr_response, 'content'):
                markdown_text = ocr_response.content
            
            # If still no content, try to access any available data
            if not markdown_text:
                # Try to get a JSON representation to extract data
                try:
                    response_dict = ocr_response.to_dict() if hasattr(ocr_response, 'to_dict') else ocr_response.__dict__
                    markdown_text = "# Extracted Content\n\n"
                    
                    # Look for content or text in the response dictionary
                    if 'content' in response_dict:
                        markdown_text += response_dict['content']
                    elif 'text' in response_dict:
                        markdown_text += response_dict['text']
                    elif 'pages' in response_dict:
                        for page in response_dict['pages']:
                            if 'text' in page:
                                markdown_text += page['text'] + "\n\n"
                    else:
                        # Just dump what we got as JSON
                        markdown_text += f"```json\n{json.dumps(response_dict, indent=2)}\n```"
                except Exception as e:
                    markdown_text = f"# Error Processing Response\n\nCould not process the OCR response: {str(e)}"
            
            # If we still have no content, raise an error
            if not markdown_text:
                raise ConversionError("No text was extracted from the document")
            
            return f"# Document Content\n\n{markdown_text}"
        
        except (DocumentProcessingError, ConversionError):
            # Re-raise our custom exceptions
            raise
        except Exception as e:
            logger.error(f"OCR extraction error: {str(e)}")
            raise ConversionError(f"OCR extraction failed: {str(e)}")
    
    def _extract_with_document_understanding(self, client, file_path, file_extension):
        """Extract and understand document content using chat completion."""
        try:
            # For documents and images, we'll use Mistral's document understanding capability
            if file_extension in ['.pdf', '.docx', '.pptx']:
                # Upload document first
                try:
                    # Upload the file
                    uploaded_pdf = client.files.upload(
                        file={
                            "file_name": file_path.name,
                            "content": open(file_path, "rb"),
                        },
                        purpose="ocr"
                    )
                    
                    # Get the signed URL
                    signed_url = client.files.get_signed_url(file_id=uploaded_pdf.id)
                    
                    # Send to chat completion API with document understanding prompt
                    chat_response = client.chat.complete(
                        model="mistral-large-latest",
                        max_tokens=config.model.max_tokens,
                        temperature=config.model.temperature,
                        messages=[
                            {
                                "role": "user",
                                "content": [
                                    {
                                        "type": "text",
                                        "text": "Convert this document to well-formatted markdown. Preserve all important content, structure, headings, lists, and tables. Include brief descriptions of any images."
                                    },
                                    {
                                        "type": "document_url",
                                        "document_url": signed_url.url
                                    }
                                ]
                            }
                        ]
                    )
                    
                    # Get the markdown result
                    return chat_response.choices[0].message.content
                
                except Exception as e:
                    # Fall back to OCR if document understanding fails
                    logger.warning(f"Document understanding failed, falling back to OCR: {str(e)}")
                    return self._extract_with_ocr(client, file_path, file_extension)
            
            else:
                # For images, encode to base64
                base64_image = self.encode_image(file_path)
                
                mime_type = self._get_mime_type(file_extension)
                
                # Use the chat API with the image for document understanding
                chat_response = client.chat.complete(
                    model="mistral-large-latest",
                    max_tokens=config.model.max_tokens,
                    temperature=config.model.temperature,
                    messages=[
                        {
                            "role": "user",
                            "content": [
                                {
                                    "type": "text",
                                    "text": "Extract all text from this image and convert it to well-formatted markdown. Preserve the structure and layout as much as possible."
                                },
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:{mime_type};base64,{base64_image}"
                                    }
                                }
                            ]
                        }
                    ]
                )
                
                # Get the markdown result
                return chat_response.choices[0].message.content
        
        except Exception as e:
            logger.error(f"Document understanding error: {str(e)}")
            raise ConversionError(f"Document understanding failed: {str(e)}")
    
    def _get_mime_type(self, file_extension: str) -> str:
        """Get the MIME type for a file extension supported by Mistral OCR."""
        mime_types = {
            # Document formats supported by Mistral OCR
            ".pdf": "application/pdf",
            ".docx": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            ".pptx": "application/vnd.openxmlformats-officedocument.presentationml.presentation",
            # Image formats supported by Mistral OCR
            ".jpg": "image/jpeg",
            ".jpeg": "image/jpeg",
            ".png": "image/png",
            ".gif": "image/gif",
            ".bmp": "image/bmp",
            ".tiff": "image/tiff",
            ".tif": "image/tiff",
            ".avif": "image/avif",
            ".webp": "image/webp",
        }
        
        return mime_types.get(file_extension, "application/octet-stream")
    
    def _convert_table_to_markdown(self, table_data) -> str:
        """Convert a table data structure to markdown format."""
        if not table_data or not isinstance(table_data, list):
            return ""
        
        # Create markdown table
        markdown = ""
        
        # Add header row
        if table_data and isinstance(table_data[0], list):
            header = table_data[0]
            markdown += "| " + " | ".join(str(cell) for cell in header) + " |\n"
            
            # Add separator row
            markdown += "| " + " | ".join(["---"] * len(header)) + " |\n"
            
            # Add data rows
            for row in table_data[1:]:
                markdown += "| " + " | ".join(str(cell) for cell in row) + " |\n"
        
        return markdown
    
    def _validate_batch_files(self, file_paths: List[Path]) -> None:
        """Validate batch of files for multi-document processing."""
        if len(file_paths) == 0:
            raise DocumentProcessingError("No files provided for processing")
        if len(file_paths) > 5:
            raise DocumentProcessingError("Maximum 5 files allowed for batch processing")

        total_size = 0
        for fp in file_paths:
            if not fp.exists():
                raise DocumentProcessingError(f"File not found: {fp}")
            size = fp.stat().st_size
            if size > 10 * 1024 * 1024:
                raise DocumentProcessingError(f"Individual file size exceeds 10MB: {fp.name}")
            total_size += size
        if total_size > 20 * 1024 * 1024:
            raise DocumentProcessingError(f"Combined file size ({total_size / (1024*1024):.1f}MB) exceeds 20MB limit")

        # simple mime validation
        for fp in file_paths:
            if self._get_mime_type(fp.suffix.lower()) == "application/octet-stream":
                raise DocumentProcessingError(f"Unsupported file type: {fp.name}")

    def _create_document_part(self, file_path: Path) -> Dict[str, Any]:
        """Return a dict representing an image_url or document_url part for Mistral chat/OCR."""
        ext = file_path.suffix.lower()
        if ext in ['.pdf', '.docx', '.pptx']:
            # upload and get signed url
            client = Mistral(api_key=config.api.mistral_api_key)
            uploaded = client.files.upload(
                file={
                    "file_name": file_path.name,
                    "content": open(file_path, "rb"),
                },
                purpose="ocr",
            )
            signed = client.files.get_signed_url(file_id=uploaded.id)
            return {
                "type": "document_url",
                "document_url": signed.url,
            }
        else:
            # encode image
            b64 = self.encode_image(file_path)
            mime = self._get_mime_type(ext)
            return {
                "type": "image_url",
                "image_url": {
                    "url": f"data:{mime};base64,{b64}"
                }
            }

    def _create_batch_prompt(self, file_paths: List[Path], processing_type: str, original_filenames: Optional[List[str]] = None) -> str:
        if original_filenames:
            names = original_filenames
        else:
            names = [fp.name for fp in file_paths]
        file_list = "\n".join([f"- {name}" for name in names])
        base = f"I will provide you with {len(file_paths)} documents.\n{file_list}\n\n"
        if processing_type == "individual":
            return base + "Please convert each document to markdown as its own section, preserving structure."
        if processing_type == "summary":
            return base + (
                "Please first write an EXECUTIVE SUMMARY of all documents, then include converted markdown sections per document."
            )
        if processing_type == "comparison":
            return base + (
                "Please provide a comparison table of the documents, then individual summaries and cross-document insights."
            )
        # default combined
        return base + "Please merge the content of all documents into a single cohesive markdown document."

    def _format_batch_output(self, response_text: str, file_paths: List[Path], processing_type: str, original_filenames: Optional[List[str]] = None) -> str:
        if original_filenames:
            names = original_filenames
        else:
            names = [fp.name for fp in file_paths]
        header = (
            f"<!-- Multi-Document Processing Results -->\n"
            f"<!-- Processing Type: {processing_type} -->\n"
            f"<!-- Files Processed: {len(file_paths)} -->\n"
            f"<!-- File Names: {', '.join(names)} -->\n\n"
        )
        return header + response_text

    def parse_multiple(
        self,
        file_paths: List[Union[str, Path]],
        processing_type: str = "combined",
        original_filenames: Optional[List[str]] = None,
        ocr_method: Optional[str] = None,
        output_format: str = "markdown",
        **kwargs,
    ) -> str:
        """Parse multiple documents, supporting the same processing types as Gemini parser."""
        if not MISTRAL_AVAILABLE:
            raise DocumentProcessingError("Mistral client not installed. Install with 'pip install mistralai'.")
        if not config.api.mistral_api_key:
            raise DocumentProcessingError("MISTRAL_API_KEY not set.")

        try:
            # convert to Path objects
            paths = [Path(p) for p in file_paths]
            self._validate_batch_files(paths)

            if self._check_cancellation():
                return "Conversion cancelled."

            use_understanding = ocr_method == "understand"
            client = Mistral(api_key=config.api.mistral_api_key)

            if use_understanding:
                # Build chat content with document parts
                prompt = self._create_batch_prompt(paths, processing_type, original_filenames)
                content_parts = [
                    {"type": "text", "text": prompt},
                ]
                for p in paths:
                    if self._check_cancellation():
                        return "Conversion cancelled."
                    content_parts.append(self._create_document_part(p))

                chat_response = client.chat.complete(
                    model="mistral-large-latest",
                    max_tokens=config.model.max_tokens,
                    temperature=config.model.temperature,
                    messages=[{"role": "user", "content": content_parts}],
                )
                markdown_text = chat_response.choices[0].message.content
                return self._format_batch_output(markdown_text, paths, processing_type, original_filenames)

            # else basic OCR path
            results = []
            for idx, p in enumerate(paths):
                if self._check_cancellation():
                    return "Conversion cancelled."
                text = self._extract_with_ocr(client, p, p.suffix.lower())
                if processing_type == "individual":
                    name = (original_filenames[idx] if original_filenames else p.name)
                    text = f"# Document {idx+1}: {name}\n\n" + text
                results.append(text)

            combined_md = "\n\n---\n\n".join(results) if processing_type in ["individual", "combined"] else "\n\n".join(results)

            # For summary/comparison we now ask chat to summarise
            if processing_type in ["summary", "comparison"]:
                prompt = self._create_batch_prompt(paths, processing_type, original_filenames)
                chat_response = client.chat.complete(
                    model="mistral-large-latest",
                    max_tokens=config.model.max_tokens,
                    temperature=config.model.temperature,
                    messages=[
                        {"role": "user", "content": prompt + "\n\n" + combined_md}
                    ],
                )
                combined_md = chat_response.choices[0].message.content

            return self._format_batch_output(combined_md, paths, processing_type, original_filenames)

        except Exception as e:
            logger.error(f"Error parsing multiple documents with Mistral OCR: {str(e)}")
            raise DocumentProcessingError(f"Batch processing failed: {str(e)}")

# Register the parser with the registry
if MISTRAL_AVAILABLE:
    ParserRegistry.register(MistralOcrParser)
else:
    print("Mistral OCR parser not registered: mistralai package not installed")