Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition, ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.documents import Document | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
import json | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.schema import Document | |
load_dotenv() | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
# Tools | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"arvix_results": formatted_search_docs} | |
def similar_question_search(question: str) -> str: | |
"""Search the vector database for similar questions and return the first results. | |
Args: | |
question: the question human provided.""" | |
matched_docs = vector_store.similarity_search(query, 3) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in matched_docs | |
]) | |
return {"similar_questions": formatted_search_docs} | |
# Load system prompt | |
system_prompt = """ | |
You are a helpful assistant tasked with answering questions using a set of tools. | |
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. | |
""" | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
with open('metadata.jsonl', 'r') as jsonl_file: | |
json_list = list(jsonl_file) | |
json_QA = [] | |
for json_str in json_list: | |
json_data = json.loads(json_str) | |
json_QA.append(json_data) | |
documents = [] | |
for sample in json_QA: | |
content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}" | |
metadata = {"source": sample["task_id"]} | |
documents.append(Document(page_content=content, metadata=metadata)) | |
# Initialize vector store and add documents | |
vector_store = Chroma.from_documents( | |
documents=documents, | |
embedding=embeddings, | |
persist_directory="./chroma_db", | |
collection_name="my_collection" | |
) | |
vector_store.persist() | |
print("Documents inserted:", vector_store._collection.count()) | |
# Retriever tool (optional if you want to expose to agent) | |
retriever_tool = create_retriever_tool( | |
retriever=vector_store.as_retriever(), | |
name="Question Search", | |
description="A tool to retrieve similar questions from a vector store.", | |
) | |
# Tool list | |
tools = [ | |
multiply, add, subtract, divide, modulus, | |
wiki_search, web_search, arvix_search, | |
] | |
# Build graph | |
def build_graph(provider: str = "groq"): | |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0,api_key=groq_api_key) | |
llm_with_tools = llm.bind_tools(tools) | |
def assistant(state: MessagesState): | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
similar = vector_store.similarity_search(state["messages"][0].content) | |
if similar: | |
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}") | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
return {"messages": [sys_msg] + state["messages"]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges("assistant", tools_condition) | |
builder.add_edge("tools", "assistant") | |
return builder.compile() |