Spaces:
Runtime error
Runtime error
AAAAAAyq
commited on
Commit
·
ddaa443
1
Parent(s):
d852f6a
add queue
Browse files- app.py +53 -22
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -5,8 +5,7 @@ import gradio as gr
|
|
| 5 |
import cv2
|
| 6 |
import torch
|
| 7 |
# import queue
|
| 8 |
-
# import
|
| 9 |
-
|
| 10 |
# from PIL import Image
|
| 11 |
|
| 12 |
|
|
@@ -137,18 +136,51 @@ def fast_show_mask_gpu(annotation, ax,
|
|
| 137 |
ax.imshow(show_cpu)
|
| 138 |
|
| 139 |
|
| 140 |
-
# #
|
| 141 |
-
#
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
def predict(input, input_size=512, high_visual_quality=
|
| 145 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 146 |
input_size = int(input_size) # 确保 imgsz 是整数
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 148 |
fig = fast_process(annotations=results[0].masks.data,
|
| 149 |
image=input, high_quality=high_visual_quality, device=device)
|
| 150 |
return fig
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
# # 将耗时的函数包装在另一个函数中,用于控制队列和线程同步
|
| 153 |
# def process_request():
|
| 154 |
# while True:
|
|
@@ -156,8 +188,8 @@ def predict(input, input_size=512, high_visual_quality=True):
|
|
| 156 |
# # 如果请求队列不为空,则处理该请求
|
| 157 |
# try:
|
| 158 |
# lock.put(1) # 加锁,防止同时处理多个请求
|
| 159 |
-
#
|
| 160 |
-
# fig = predict(
|
| 161 |
# request_queue.task_done() # 请求处理结束,移除请求
|
| 162 |
# lock.get() # 解锁
|
| 163 |
# yield fig # 返回预测结果
|
|
@@ -179,17 +211,17 @@ def predict(input, input_size=512, high_visual_quality=True):
|
|
| 179 |
# image=input, high_quality=high_quality_visual, device=device)
|
| 180 |
app_interface = gr.Interface(fn=predict,
|
| 181 |
inputs=[gr.components.Image(type='pil'),
|
| 182 |
-
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64),
|
| 183 |
-
gr.components.Checkbox(value=
|
| 184 |
outputs=['plot'],
|
| 185 |
-
|
| 186 |
-
# ["assets/sa_1309.jpg", 1024]],
|
| 187 |
-
examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
cache_examples=
|
| 192 |
-
title="Fast Segment
|
| 193 |
)
|
| 194 |
|
| 195 |
# # 定义一个请求处理函数,将请求添加到队列中
|
|
@@ -201,8 +233,7 @@ app_interface = gr.Interface(fn=predict,
|
|
| 201 |
# return None
|
| 202 |
|
| 203 |
# # 添加请求处理函数到应用程序界面
|
| 204 |
-
# app_interface.
|
| 205 |
-
|
| 206 |
|
| 207 |
-
app_interface.queue(concurrency_count=
|
| 208 |
app_interface.launch()
|
|
|
|
| 5 |
import cv2
|
| 6 |
import torch
|
| 7 |
# import queue
|
| 8 |
+
# import threading
|
|
|
|
| 9 |
# from PIL import Image
|
| 10 |
|
| 11 |
|
|
|
|
| 136 |
ax.imshow(show_cpu)
|
| 137 |
|
| 138 |
|
| 139 |
+
# # 预测队列
|
| 140 |
+
# prediction_queue = queue.Queue(maxsize=5)
|
| 141 |
+
|
| 142 |
+
# # 线程锁
|
| 143 |
+
# lock = threading.Lock()
|
| 144 |
+
|
| 145 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 146 |
|
| 147 |
+
def predict(input, input_size=512, high_visual_quality=False):
|
|
|
|
| 148 |
input_size = int(input_size) # 确保 imgsz 是整数
|
| 149 |
+
# # 获取线程锁
|
| 150 |
+
# with lock:
|
| 151 |
+
# print('5')
|
| 152 |
+
# # 将任务添加到队列
|
| 153 |
+
# prediction_queue.put((input, input_size, high_visual_quality))
|
| 154 |
+
|
| 155 |
+
# # 等待结果
|
| 156 |
+
# print('6')
|
| 157 |
+
# fig = prediction_queue.get()[0]
|
| 158 |
+
# print(fig)
|
| 159 |
+
# return fig
|
| 160 |
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 161 |
fig = fast_process(annotations=results[0].masks.data,
|
| 162 |
image=input, high_quality=high_visual_quality, device=device)
|
| 163 |
return fig
|
| 164 |
|
| 165 |
+
# def worker():
|
| 166 |
+
# while True:
|
| 167 |
+
# # 从队列获取任务
|
| 168 |
+
# print('1')
|
| 169 |
+
# input, input_size, high_visual_quality = prediction_queue.get()
|
| 170 |
+
|
| 171 |
+
# # 执行模型预测
|
| 172 |
+
# print('2')
|
| 173 |
+
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
| 174 |
+
# print('3')
|
| 175 |
+
# fig = fast_process(annotations=results[0].masks.data,
|
| 176 |
+
# image=input, high_quality=high_visual_quality, device=device)
|
| 177 |
+
# print('4')
|
| 178 |
+
# # 将结果放回队列
|
| 179 |
+
# prediction_queue.put(fig)
|
| 180 |
+
|
| 181 |
+
# # 在一个新的线程中启动工作函数
|
| 182 |
+
# threading.Thread(target=worker).start()
|
| 183 |
+
|
| 184 |
# # 将耗时的函数包装在另一个函数中,用于控制队列和线程同步
|
| 185 |
# def process_request():
|
| 186 |
# while True:
|
|
|
|
| 188 |
# # 如果请求队列不为空,则处理该请求
|
| 189 |
# try:
|
| 190 |
# lock.put(1) # 加锁,防止同时处理多个请求
|
| 191 |
+
# input, input_size, high_visual_quality = request_queue.get()
|
| 192 |
+
# fig = predict(input, input_size, high_visual_quality)
|
| 193 |
# request_queue.task_done() # 请求处理结束,移除请求
|
| 194 |
# lock.get() # 解锁
|
| 195 |
# yield fig # 返回预测结果
|
|
|
|
| 211 |
# image=input, high_quality=high_quality_visual, device=device)
|
| 212 |
app_interface = gr.Interface(fn=predict,
|
| 213 |
inputs=[gr.components.Image(type='pil'),
|
| 214 |
+
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
| 215 |
+
gr.components.Checkbox(value=False, label='high_visual_quality')],
|
| 216 |
outputs=['plot'],
|
| 217 |
+
examples=[["assets/sa_8776.jpg", 1024, True]],
|
| 218 |
+
# # ["assets/sa_1309.jpg", 1024]],
|
| 219 |
+
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
| 220 |
+
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
| 221 |
+
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
| 222 |
+
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
| 223 |
+
cache_examples=True,
|
| 224 |
+
title="Fast Segment Anything (Everything mode)"
|
| 225 |
)
|
| 226 |
|
| 227 |
# # 定义一个请求处理函数,将请求添加到队列中
|
|
|
|
| 233 |
# return None
|
| 234 |
|
| 235 |
# # 添加请求处理函数到应用程序界面
|
| 236 |
+
# app_interface.call_function()
|
|
|
|
| 237 |
|
| 238 |
+
app_interface.queue(concurrency_count=1, max_size=20)
|
| 239 |
app_interface.launch()
|
requirements.txt
CHANGED
|
@@ -6,8 +6,8 @@ opencv-python
|
|
| 6 |
# PyYAML>=5.3.1
|
| 7 |
# requests>=2.23.0
|
| 8 |
# scipy>=1.4.1
|
| 9 |
-
torch
|
| 10 |
-
torchvision
|
| 11 |
# tqdm>=4.64.0
|
| 12 |
|
| 13 |
# pandas>=1.1.4
|
|
|
|
| 6 |
# PyYAML>=5.3.1
|
| 7 |
# requests>=2.23.0
|
| 8 |
# scipy>=1.4.1
|
| 9 |
+
# torch
|
| 10 |
+
# torchvision
|
| 11 |
# tqdm>=4.64.0
|
| 12 |
|
| 13 |
# pandas>=1.1.4
|