File size: 3,000 Bytes
f32f4fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python
# coding: utf-8

# ### Keywords to Title Generator
# - https://huggingface.co/EnglishVoice/t5-base-keywords-to-headline?text=diabetic+diet+plan
# - Apache 2.0

# In[1]:


import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-keywords-to-headline")
tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-keywords-to-headline", clean_up_tokenization_spaces=True, legacy=False)
model = model.to(device)



# In[55]:


keywords = "music, sleep, night"

text =  "headline: " + keywords
encoding = tokenizer.encode_plus(text, return_tensors = "pt")
input_ids = encoding["input_ids"].to(device)
attention_masks = encoding["attention_mask"].to(device)
beam_outputs = model.generate(
    input_ids = input_ids,
    attention_mask = attention_masks,
    max_new_tokens = 25,
    do_sample = True,
    num_return_sequences = 5,
    temperature = 1.2,
    #num_beams = 20,
    #num_beam_groups = 20,
    #diversity_penalty=0.8,
    no_repeat_ngram_size = 3,
    penalty_alpha = 0.8,
    #early_stopping = True,
    top_k = 15,
    #top_p = 0.60,
)

for i in range(len(beam_outputs)):
    result = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)
    print(result)


# In[1]:


import gradio as gr


# In[ ]:





# In[ ]:





# In[ ]:





# In[ ]:





# In[ ]:


'''
#Create a four button panel for changing parameters with one click

def fn(text):
    return ("Hello gradio!")

with gr.Blocks () as demo:

    with gr.Row(variant='compact') as PanelRow1: #first row: top
        
        with gr.Column(scale=0, min_width=180) as PanelCol5:
            gr.HTML("")
        with gr.Column(scale=0) as PanelCol4:
            submit = gr.Button("Temp++", scale=0)
        with gr.Column(scale=1) as PanelCol5:
            gr.HTML("")
        
       
    with gr.Row(variant='compact') as PanelRow2: #2nd row: left, right, middle

        with gr.Column(min_width=100) as PanelCol1:
            submit = gr.Button("Contrastive")
        with gr.Column(min_width=100) as PanelCol2:
            submit = gr.Button("Re-generate")
        with gr.Column(min_width=100) as PanelCol3:
            submit = gr.Button("Diversity Beam")
        
        with gr.Column(min_width=100) as PanelCol5:
            gr.HTML("")
        with gr.Column(min_width=100) as PanelCol5:
            gr.HTML("")
        with gr.Column(scale=0) as PanelCol5:
            gr.HTML("")
            
    with gr.Row(variant='compact') as PanelRow3: #last row: down
        with gr.Column(scale=0, min_width=180) as PanelCol7:
            gr.HTML("")
        with gr.Column(scale=1) as PanelCol6:
            submit = gr.Button("Temp--", scale=0)
            
        with gr.Column(scale=0) as PanelCol5:
            gr.HTML("")

demo.launch()
'''


# In[164]:


import gc
gc.collect()


# In[166]:


gr.close_all()


# In[ ]: